ZHIDECHUANGXIN 品牌
生产厂家厂商性质
北京市所在地
耐电压击穿|工频击穿电压试验仪
关键词:变压器;油击穿;电压实验;问题
在交流电场下,变压器油纸绝缘电压一般按照电容分布;直流电压下,一般按照电阻分布。在极性反转电压下,既有长时间的直流电压维持,又有极性反转的过程,因此,电压分布关系要相对复杂。有必要对变压器绝缘在该电压下的击穿特性和击穿机理进行深入研究。
1实验方法
1.1实验模型
实验模型如图1所示,包括高压电极、低压电极、屏蔽电极和绝缘支撑。高低压电极的直径为90mm,导角的半径为15mm,高度为50mm。屏蔽与低压电极间隙为2mm,高度为20mm避免了绝缘支架漏电流对电流测量的影响。电流测量在低压电极与屏蔽之间通过屏蔽电缆引出来获得。实验模型放置在一个绝缘筒油箱中,其中充满被实验的变压器油,高低压电极之间的油隙为试样。
1.2实验装置
实验装置如图2所示,包括正极性直流高压发生器、负极性直流高压发生器、保护电阻、烘箱、实验模型和微安表。极性反转靠正负极性直流高压发生器之间的转换开关控制。
1.3实验过程
变压器油试品首先经过脱水、脱气处理,使含水量小于l0ppm,交流击穿电压大于60kV,90℃时介质损耗小于0.4%,可以看成工程纯净变压器油。处理后的变压器油放置在烘箱中恒温。
参照实验标准,根据击穿实验的要求,本文设计了实验方案,施加电压过程如图3所示。对每个样品实验,电压施加到-V1,后开始记录实验时间。从每个电压持续时间开始时刻算起,取最小20s间隔记录实验电压与电流数值,一直到样品击穿。更换新变压器油样品,重复进行实验。
2实验结果
2.1不同油隙实验
油隙取6mm和8mm,每个油隙样品个数为10}在室温20℃下进行了极性反转电压实验。对每个间隙,都得到了10个击穿电压值,把它们(实点)标注在不击穿时施加电压过程曲线(细线)上可以得到击穿电压位置的分布情况,如图4所示。取10个样品中击穿电压相对较高的5个样品的电流作算术平均,平均电流变化曲线如图5所示。经计算,6mm油隙的击穿场强绝对值的平均值为8.33kV/mm
8mm油隙为8.9kV/mm。
图4可以说明,在20℃温度下,2种油隙的击穿没有发生在极性反转位置;随油隙距离增大,击穿电压升高。计算的击穿场强数值也出现了升高。图5可以说明,2种油隙平均电流变化规律一致,同一电压下,电流出现了明显从暂态到稳态的变化过程。
2.2不同温度实验
取油隙为8mm,在20℃、40℃、60℃、80℃和100℃5个温度点下,进行了极性反转电压实验,对每个温度点下样品个数为10。击穿场强绝对值与温度关系如图6所示。对每个温度点下的10个击穿电压值的分布情况如图7所示。
图6说明变压器油击穿场强与温度相关,在40℃以下时,随温度升高,击穿场强升高。在40℃以上时,随温度升高击穿场强下降,在40℃时出现了最大值。由图7可见,击穿电压出现时刻的概率分布不同。低温时击穿电压不出现在极性反转位置,高温时击穿经常在极性反转位置;不论低温还是高温下,击穿出现在同极性电压升高位置概率高。
在各种温度下,油隙平均电流随施加电压升高而增大。在同一电压下,平均电流随温度升高而增大,而且都出现了从暂态到稳态的变化过程,这个过程的规律相差很大。低温时电流由小到大缓慢变化,高温时电流出现了过冲,电流由大到小变化。
3离子运动与击穿规律的讨论
3.1液体电导的一般规律
作为弱极性介质,变压器油的电导一般为杂质电导。在弱电场下,杂质分子仅有极少一部分由于热振动离解而形成的正负极性的带电离子,离解的正负离子相碰撞也能复合成中性分子。液体中的离子在松弛时间内与邻近的分子束缚在一起,在某一位置作振动,而另一段时间因碰撞得到较大的动能超出邻近分子的束缚势垒时,与相邻的分子分开,迁移一个与分子尺寸可相比较的一段路径后,再次被束缚。在无电场时,离子沿各方向迁移几率相等,总体无离子电流。
3.2离子运动模型建立
从离子电导一般规律可以看出,正负离子的产生是分子热振动的结果,同时离子会复合成分子。在电场作用下,仅有一小部分过剩离子运动产生电导。由于离子的平均跃迁距离远小于极板之间的距离,所以过剩离子中的一小部分正负离子能够达到电极中和产生电极电流。
平衡(稳定)状态下,单位时间内离子数应该满足以下等式:
热离解离子数=复合离子数+中和离子数。
在单位时间内离子运动的平均距离为s,设电场间隙d为s的m倍,则暂态过程che底完成需要m个单位时间。假设离子在所处的区域内均匀分布,则在第一个单位时间,热电离产生的浓度为n01,的离子,沿电场方向产生的过剩离子为△n1,这些过剩离子有s距离空间的离子能够达到极板,间隙内剩余(d-s>距离空间的过剩离子。在第二个单位时间内,会有相同浓度n01(第一个单位时间内的过剩离子与总离子数相比较可以忽略)的离子产生,沿电场方向也产生的过剩离子△n1,和相同距离s的位移,但与第一个单位时间不同的是,第一个单位时间内乘l余的过剩离子由于复合作用浓度下降到△n2同时也完成了s距离的移动。如次累计,当单位时间数增加到一定程度后,由于离子复合的作用,第一个单位时间离解的过剩离子己经不存在了,离子运动进入稳态过程。
正负过剩离子运动规律的差异会导致电场分空间非对称性;电场强度变化会导致过剩离子运动发生改变,通过弱场区域离子运动速度减慢,通过强场区的运动速度加快,也会导致电场改变,所以实际电场分布会有所差异。按照以上离子运动模型,极板电流及电场的分布与过剩离子的复合速度、离子运动速度(单位时间内离子运动的平均距离和极板间距有关。其他条件不变时,随温度增加,过剩离子复合速度和运动速度都增加,电场畸变减弱;其他条件不变时,电场强度增大,过剩离子运动速度与复合速度增加,电场畸变减弱。
3.3极性反转电压下的击穿规律
一般,击穿电压与电场畸变程度有关。电场畸变造成局部场强过高,引起局部放电或击穿,最后导致整体绝缘击穿。相同温度和场强下,油间隙在一定范围内变化不会影响电极附近离子浓度分布,场强畸变变化不大,所以在极性反转电压下,击穿场强没有出现随油间隙增加而下降的“体积效应”现象。同极性电压升高瞬间使电场畸变,无论在低温还是在高温状态下,油隙击穿概率都提高。
在极性反转过程中,高温时离子运动速度快,受离子集聚影响,电极附近电场强度增大。所以,高温时击穿会常常发生在极性反转过程中。稳态时,随温度增加,离子运动和复合速度加快,电场畸变减弱。所以低温时更容易在稳态击穿。变压器油在极性反转电压下击穿的温度特性是以上3种情况共同作用出现的结果。
结论:在极性反转电压下,击穿场强随油间隙没有出现“体积效应”现象。变压器油击穿电压与温度相关,出现击穿电压由低到高,再由高到低的变化,在本实验温度点内,40℃出现了击穿场强的最高值。在极性反转后,流过油隙的电流出现了暂态过程,该过程随温度变化明显。采用提出的离子运动模型可以解释极性反转电压下变压器油击穿的规律。变压器油的击穿特性及其规律研究结果对
耐电压击穿|工频击穿电压试验仪实验要求及测试报告:
一、验前准备:
1.样品准备:
1.1试样处理:将所测试样加工成200*200mm厚度3mm以下的片状,并将其表面清洁干净,试验时将试样光面向上放置(即光滑面放高压电极)。绝缘材料的电气强度随温度和水份含量而变化.若被试验材料已有规定,则应遵循此规定.否则,除非另有商定条件,试样应在温度为(23±2)℃,相对湿度为(50±5)%℃条件下处理少于24H
1.2样品准备注意点.
1.2.1制备固体材料试样时,应注意与电极接触的试样两表面要平行,而且应尽可能平整光滑.
1.2.2对于垂直于材料表面的试验,要求试样有足够大的面积以防止试验过程中发生闪络.
1.2.3对于垂直于材料表面的试验,不同厚度的试样其结果不能直接相比
2、两电极间距离测量用来计算电气强度的两电极间距离值应为下列之一(按被试样材料的规定).
2.1标称厚度或两电极间距离(除非另有规定,一般均采用此值);
2.2对于平等于表面的试验,两电极间的距离;
2.3在每个试样上击穿点附近直接测得的厚度或两电极间的距离.
3、电极清洁:在试验前,检查电极是否干净,如果有污垢,使用无尘布蘸取酒精擦干净上下电极,保证电极无污垢。
二、周围煤质选择
材料应在为防止闪络而选取的周围煤质中试验,在大多数情况下,符合IEC60296:2003的变压器油是适用的煤质.对在矿物油中会引起膨胀的材料,此时其他的流体(例如硅油),可能是更合适的.
对击穿电压值相对较低的试样,可在空气中试验,此时若要在高温下进行试验时,应注意即使在中等的试验电压下,在电极边缘的放电也会对测试值造成很大的影响.
如果试图在另一种媒质中对某种材料的性能进行试验评定,则可以应用这种媒质.
所选取的媒质应对被试样材料的危害影响是最小的.
周围媒质对试验结果可能有很大影响,特别是对易吸收的材料,如纸和纸板,因此必需在试样制备程序中确定全部的必要步骤(例如干媒和浸渍),以及试验过程中周围煤质的状态.必须有足够的时间让试样和电极达到所要求的温度,但有些材料会因长期处于高温而受到的影响.
1、在高温空气中的试验在高温空气中的试验,可在任何设计合理的烘箱中进行,烘箱要有足够大的体积来容纳试样和电极,使它们在试验时不发生闪络.烘箱应装有空气循环装置使试样周围温度在规定温度的±2℃内且应大体上保持均匀,把温度计、热电偶或其他测量温度的装置尽可能放在实验点附近测量温度.
2、在液体中的试验
当试验要在绝缘液体中进行时,除非其他液体更合适外,一般应在使用符合IEC60296:2003的变压器油,必须保证液体有足够的电气强度以避免闪络.在具有此变压器油更高的相对电容率的液体中试验的试样,会出现在此在变压器油中试验时更高的电气强度.降低变压器油或其他液体电气强度的杂质,也可能会增加试验上测得的电气强度.
高温下的试验可能在烘箱内的盛液容器中进行,也可在绝缘油作为热传递介质的恒温控制的油浴中进行.在这种情况下,应采用合适的液体循环措施,以使试样周围的温度大致均匀,并保持在规定温度的±2℃内.
三、升压方式
1、短时(快速)试验
1.1将试验电压由零开始以均匀均匀的速度升高直至击穿发生.
1.2对被试材料选择升压速度时,应使大多数击穿发生在(10~20)s之间,则认为试验是成功的.
1.3升压速度应从下述中选取:
100V/s,200V/s,500V/s,1000V/s,200V/s,3000V/s等等.
注:对于大多数材料,通常使用500V/s的升压速度,对模塑材料,推荐使用2000V/s升压速度.以便获得与IEC60296:2003相适应的可比数据.
2、20s逐级升升压试验
2.1将40%的预计短时击穿电压施加于试样上假如不知道短时击穿电压预计值,则应按上述1.1~1.3方法得来。
2.2假如试样耐受这个电压20s还未击穿,则应该按表1规定的增量逐级增加电压.每一次增加的电压应立即且连续施加20s直至发生击穿.
2.3升压要尽可能地快并无任何瞬态过电压,级间升压所用的时间应包括在较高一级电压的20s期间内
2.4如果击穿发生在从起始试验算起少于6级的电压内,则用更低的起始电压再做5个试样的试验
2.5根据试样能耐受20s而不击穿的最高试验电压来确定电气强度.
3、慢速升压试验(120~240)s从40%的预计适时击穿电压开始匀速升压,便击穿发生在(120~240)s之间,对于击穿电压有显著差异的材料来说,有些试样可能在此时间范围以外发生破坏.如果大多数击穿发生在(120~240)s之间,则认为是满意的,选择升压速度时应从下列数据中开始选择:2V/s,5V/s,10V/s,20V/s,50V/s,100V/s,200V/s,500V/s,1000V/s等等.
4、60s逐级升压试验除非另有规定,应按“20s逐级升升压试验"进行试验,但每一级中的耐压时间为60s.
5、极慢速升压试验(300~600)s
除非另有规定,应按“慢速升压试验(120~240)s"进行试验,但击穿应发生在(300~600)s之间,从下列数据中选择升压速度;1V/s,2V/s,5V/s;10V/s;20V/s;50V/s,100V/s,200V/s等等
注:在10.3中所述的(120-240)s的慢速升压试验和在10.5在所述的(300~600)s的极慢速升压试验所得结果与20s逐级升压(10.2)或60s逐级升压(10.4)所得结果大致相似,当使用现代自动设备时,前两者较逐级升压试验更为方便且采用这两种慢速升压试验也使自动设备的使用成为可能.
6、检查试验
当做检查或耐压试验时,要求施加一个预先确定的电压值,即将该电压尽可能快而准确地升到所要求的值,升压过程中不出现任何瞬态的过电压,然后将所要求的电压值维持到规定的时间.
四、击穿的判断
在电击穿的同时,回路中电流增加和试样两端电压下降,电流的增加可使断路器跳开或熔丝烧断,但有时也可由于闪络、试验充电电流、漏电或局部放电电流、设备磁化电流或误动作而引起断路器跳开.因此,断路器应与试验设备及被试材料的特性相匹配,否则,断路器可能会在试样未击穿时动作或当试样击穿时断路器不动作,这样便不能正确的判断出是否击穿.即使在最好条件下,也存在周围煤质先击穿的情况也会发生,因此试验过程中要注意观察和检测这些现象,若发现煤质击穿,应在报告中注明.
注:对漏电检测电路敏感性特别重要那些材料,在这种材料的标准中也应作同样的说明.
在垂直于材料表面方向试验时通常容易判断,无论通道是否充有碳粒,当击穿发生后用肉眼容易看到真正击穿的通道.当平行于材料表面方向试验时,要求判断是由试样破坏引起的击穿现象还是由闪络引起的失效.可以通过检查试样或使用再施加一次电压的办法来进行鉴别,再次施加的电压值应小于第一次施加的击穿电压值.试验证明,再次施加的电压值为第一次击穿电压值的50%比较合适,然后用与第一次试验相同的方法升压直到在破坏.
五、试验次数
1、除非另有规定,通常应做5次试验,取试验结果的中值作为电气强度或击穿电压的值.如果任何一个试验结果偏离中值的15%以上,则另做5次试验.然后由10次试验的中值作为其电气强度或击穿电压的值.
2、当试验并非用于例行的质量控制时,必须做较多的试样,具体的数量与材料的分散性和所用的统计分析方法有关.
3、对并非用于例行的质量控制试验,参见附录A对决定需要试验次数和数据分析参考是有用的.
六、试验方法:
将测试产品放至电流电极上(见图3),用电压电极压于试样上面。关好玻璃门,开启电源开关,再参照相关标准设定所需参数,如无标准要求,按以下步骤进行:
1.击穿电压强度试验
1)连续升压:试验电压从零开始,按表1规定的升压速度连续均匀升压,直至试样被击穿,读取击穿电压值。
表1连续升压法升压速度
击穿电压 kV | 升压速度 Kv/s |
﹤20 | 1 |
≥20 | 2 |
2)逐级升压:按连续升压法所测得的试样击穿电压值的
50%作为起始电压,停留一分钟后如试样未被击穿,则按表2规定的电压值逐级升压,并在每一级电压上停留1分,直至试
样被击穿为止。若在升压过程中发生击穿,应读取前一级的电压值;若击穿发生在保持不变的电压级上,则以该电压作为击穿电压。
表2逐级升压法升压电压值
击穿电压U(Kv) | U﹤5 | 5≤U﹤25 | 25≤U﹤50 | U≥50 |
每级升压电压值kV | 0.5 | 1 | 2 | 5 |
2.耐电压试验:
1)迅速将电压升高到由产品标准规定的电压值停留1分,观察试样是否击穿。若不击穿,则定此电压为耐电压值。
试验结果:
击穿电压强度E(kV/mm),按下式计算:
E=U/d式中:U----击穿电压,单位为千伏(kV);d-----试样厚度,单位为毫米(mm)。
取3个试样的中位数为试验结果,保留小数点后一位。
七、试验报告
除非另有规定,报告应包括如下内容:
1、被试样材料全称,试样及其制备方法的说明
2、电气强度的中值(以KV/MM表示)或击穿电压的中值(以KV表示)
3、每个试样的厚度(见5.4)
4、试验时所用的周围煤质及其性能
5、电极系统
6、施加电压的方式及频率
7、电气强度的各个值(以KV/MM表示)或击穿电压的各个值(以KV表示)
8、在空气中或在其他气体中试验时的温度、压力和湿度,若在液体中试验时周围煤质的温度
9、试验前条件处理
10、击穿类型和位置的说明