商业智能和数据分析的区别是什么?
- 来源:千家网
- 2022/9/23 9:10:44
- 22382
商业智能和数据分析的区别是什么?在数据驱动的企业中,商业智能(BI)和数据分析经常交替使用。虽然两者不同,但很难弄清楚其中的区别。
人们现在意识到商业分析和商业智能解决方案在零售业的影响。此外,其不仅仅局限于零售领域。商业智能和数据分析是现代最强大的力量。为了获得更好的结果,我们应该熟悉这两者的区别。
下面,让我们先来了解这两者的定义,再研究其中的区别。
什么是商业智能?
商业智能(BI)使用软件和服务将数据转换为有用的见解,从而影响企业的战略和战术业务选择。为了让用户深入了解业务状况,BI工具访问和分析数据集,并在报告、摘要、仪表板、图表、图表和地图中显示分析结果。
在现代商业智能领域,电子表格已被完全淘汰。相反,BI利用SQL数据库、云平台和机器学习等新技术,帮助组织做出更有自我意识、基于证据的选择。
商业智能需要编码吗?
编码对于商业智能(BI)处理数据和生成富有洞察力的发现是必要的。BI项目生命周期的数据建模和仓库阶段涉及到编码。但是,BI生命周期的其他阶段并不需要编码。任何具有一定编程经验的人都可以开始从事BI工作。
商业智能vs商业分析
对事件时间的强调是商业智能和商业分析之间的主要区别。商业智能侧重于数据对近期和历史事件的表示;而商业分析的重点是最有可能发生的未来事件。
商业分析师vs商业智能分析师的薪酬
与商业分析师相比,商业智能分析师赚的钱更多。Payscale声称,商业分析师的年收入为70644美元,而BI分析师的年收入为71050美元。
什么是数据分析?
对未经处理的数据进行检查以得出此类信息的推论的研究被称为数据分析。许多数据分析方法和程序已经被机械化为机械程序和算法,这些程序和算法对原始数据进行操作,供人类使用。
“数据分析”这个词很宽泛,涵盖了许多数据分析技术。数据分析技术可以应用于任何类型的信息,以获得可用于使事情变得更好的洞察力。数据分析技术可以使趋势和指标变得可见,否则这些信息可能会丢失在数据的海洋中。企业或系统的效率可以通过使用这些信息以优化程序来提高。
数据智能vs数据分析
为了确定过去发生了什么以及原因,数据智能收集并检查有关行动、事件和其他信息的信息。数据科学和分析方法与这些数据一起被用来预测未来会发生什么,并基于这些数据做出业务决策。
数据分析需要编码吗?
高级编码知识对数据分析师来说不是必需的。相反,他们应该具备数据管理、可视化和分析软件的知识。数据分析师需要具备强大的数学能力,就像大多数与数据相关的职业一样。
数据分析使用哪种语言?
Python和SQL是数据分析中最常用的编程语言。一些分析师可能会利用R进行数值分析、计算和分析。但是,编码并不是主要的区别。那么,是什么?
商业智能和数据分析的区别
商业智能分析师通过数据发现以业务为中心的洞察力,这与专门使用分析来寻找问题解决方案的数据分析师不同。除了使用的工具可能略有不同之外,这两种工作的定义、程序、数据类型和分析是相对相同的。
让我们来看看商业智能和数据分析之间的所有区别:
商业智能分析师vs数据分析师
下面来看看商业智能分析师和数据分析师的区别:
商业智能分析师vs数据分析师的薪酬
商业智能分析师和数据分析师,哪个薪资更高?数据分析和商业分析需要需求的能力,这些能力通常需要很高的报酬。根据Coursera的数据,2021年美国商业分析师的平均基本工资将为77,218美元,而数据分析师的平均基本工资将为69,517美元。
更好的数据分析师或商业智能分析师是什么?
商业智能分析师和数据分析师都支持各自企业中的数据驱动决策。商业智能分析师更有可能解决业务问题并提出解决方案,而数据分析师通常更直接地处理数据本身。这两个职位的需求量都很大,且通常薪酬也很高。
结论
综上所述,我们现在已经研究了商业智能和数据分析之间的历史和显著区别。商业智能和数据分析工具的开发是随着当前技术市场趋势而发展的。
执行数据分析的能力是现代商业智能工具的一个特性,由企业客户决定哪种解决方案最适合其特定的企业需求。
根据最新的数据趋势,商业智能和数据分析对企业的扩张都至关重要。为了帮助二者有效地履行职能,该组织正在对 BI 和数据分析进行必要的研究。
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论