电池设计对安全性的影响如下: (1)电池能量密度很高,如果发生热失控反映,放出很高的热量容易导致不安全行为发生; (2)锂离子电池由于采用有机电解质体系,有机溶剂是碳氢化合物,在4.6V左右易发生氧化,并且溶剂易燃,若出现泄漏等情况,会引起电池着火,甚至燃烧、爆炸; (3)锂离子电池过冲电反应会是正极材料结构发生变化而使材料具有很强的氧化作用,使电解液中溶剂发生强烈氧化,并且这种作用是不可逆的,反应引发的热量如果积累会存在引发热失控的危险。 2.1时效性原则 锂离子动力电池容量较大,风险随容量的增加也成倍增加,为此需要电池设计时考虑电池后期活性物质的匹配性。随着循环进行,电池容量逐步降低、内阻增大,正极相对负极而言,有较大的结构变化;同时负极表面SEI膜增厚,在循环末期,有锂和锂的化合物沉积。 正是这些变化导致随着循环进行,电池常规性能衰退和外形发生变化。随着循环的进行,锂的脱出与嵌入会引起颗粒的体积变化,产生晶格内应力,安全性变得越差。往往新电池能通过安全性试验,但使用中后期的电池不一定再能通过安全性试验,因为在使用过程中正、负极等活性物质不匹配,在使用后期中会析出金属锂,金属锂异常活泼,极易与很多无机物和有机物反应,因此在电化学循环中,锂表面的不均匀性易造成金属锂的不均匀沉积,行程锂枝晶,引发安全问题。要获得可靠性与安全性好的锂离子动力电池,设计时必须考虑时效性,尤其应考虑电池在使用后期的安全性。 2.2可靠性原则 电池的使用环境千差万别,不同的电池有不同的使用环境要求,甚至相同的电池使用环境也有天壤之别,更要关注的是电池在误用或滥用条件下如何保证安全,长期循环的锂离子电池的耐热扰动及耐滥用能力变差。为避免电池在滥用时由于电池内特定的能量输入导致组成物质物理或化学反应产生大量的热,需对不同结构的电池采用针对性设计。 对于圆柱形电池,PTC常作为过流保护元件。由于电池内部具有置于正子与电极卷之间的限流装置PTC,电池过充时当电解液发生分解、电池温度迅速上升时,该装置开始作用并切断电流。 而对于方形铝壳电池内部没有限流装置、并且由于铝比较软、易变形,只能靠电池外部装置保证安全;采取铝塑包装膜制作的锂离子电池,尽管电池内部也没有限流装置,但是周密的设计加上电池外安全装置使电池更安全,尤其对于蜂窝使用的情况,这种结构已经在聚合物电池制造商普及。 对于圆柱和方形钢壳结构的锂离子电池,具有安全设计的顶部泄气阀结构,当电池内部产生大量气体时,气体使安全机构启动。除此功能外,还可以降低电池的温度以消除电池热失控。而对于铝塑包装膜电池,由于外包装是软性的铝塑膜,电池内部没有保护装置,因此对电池的设计要求苛刻。但是与圆柱钢壳电池相比,当发生误用与滥用使随着化学反应产生的气体逐步增大时,会将包装膜鼓胀或将铝膜焊封位置鼓破而泄压,从而保证了电池安全。 2.3安全保护电路 锂离子电池在实际应用中为了提高安全性,需要保护电路以防止过充或过放,并防止电池性能劣化。保护电路是由保护IC及两只功率MOSFET管所构成,其中保护IC检视电池电压,当有过充电及过放电状态时切换到外置的功率MOSFET管来保护电池,也有采用其他保护结构。 锂离子蓄电池经过近年来的发展,取得了长足的进步,锂离子动力电池已经在市场上出现。目前尚处于发展阶段,正加以改进以期适用于工业环境中的高倍率充放电循环、高低温条件、恶劣的环境和低维护。随着电池体系、电池材料等安全性问题的深入研究,需从设计、生产、使用方的共同努力解决锂离子电池安全性,避免不安全因素的发生,促进锂离子动力电池的健康发展。 咨询: |