上海安嵌信息科技有限公司

智能制造网免费12

收藏

LED驱动基础知识

时间:2013-08-12      阅读:758

关键字:LED 驱动
(1)

    LED驱动技术原理和超高亮LED的特性
    下图为正向压降(VF)和正向电流的(IF)关系曲线,由曲线可知,当正向电压超过某个阈值(约2V),即通常所说的导通电压之后,可近似认为,IF与VF成正比。见表是当前主要超高亮LED的电气特性。由表可知,当前超高亮LED的zui高IF可达1A,而VF通常为2~4V。
    由于LED的光特性通常都描述为电流的函数,而不是电压的函数,光通量(φV)与IF的关系曲线,因此,采用恒流源驱动可以更好地控制亮度。此外,LED的正向压降变化范围比较大(zui大可达1V以上),而由上图中的VF-IF曲线可知,VF的微小变化会引起较大的,IF变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证LED亮度的一致性,并且影响LED的可靠性、寿命和光衰。因此,超高亮LED通常采用恒流源驱动。
    下图是LED的温度与光通量(φV)关系曲线,由下图可知光通量与温度成反比,85℃时的光通量是25℃时的一半,而一40℃时光输出是25℃时的1.8倍。温度的变化对LFD的波长也有一定的影响,因此,良好的散热是LED保持恒定亮度的保证。见LED的温度与光通量关系曲线。
    一般LED驱动电路介绍
    由于受到LED功率水平的限制,通常需同时驱动多个LED以满足亮度需求,因此,需要专门的驱动电路来点亮LED。下面简要介绍LED概念型驱动电路。
    阻限流电路
    电阻限流驱动电路是zui简单的驱动电路,限流电阻按下式计算。
    式中:Vin为电路的输入电压:
    VF为IED的正向电流;
    VF为LED在正向电流为,IF时的压降;
    VD为防反二极管的压降(可选);
    y为每串LED的数目;
    x为并联LED的串数。
    由上图可得LED的线性化数学模型为
    式中:Vo为单个LED的开通压降;
    Rs为单个LED的线性化等效串联电阻。
    则上式限流电阻的计算可写为当电阻选定后,电阻限流电路的IF与VF的关系为,由上式可知电阻限流电路简单,但是,在输入电压波动时,通过LED的电流也会跟随变化,因此调节性能差。另外,由于电阻R的接人损失的功率为xRIF,因此效率低。
    线性调节器介绍
    线性调节器的核心是利用工作于线性区的功率三极管或MOSFFET作为一动态可调电阻来控制负载。线性调节器有并联型和串联型两种。
    下图a所示为并联型线性调节器又称为分流调节器(图中仅画出了一个LED,实际上负载可以是多个LED串联,下同),它与LED并联,当输入电压增大或者LED减少时,通过分流调节器的电流将会增大,这将会增大限流电阻上的压降,以使通过LED的电流保持恒定。
    由于分流调节器需要串联一个电阻,所以效率不高,并且在输入电压变化范围比较宽的情况下很难做到恒定的调节。
    下图b所示为串联型调节器,当输入电压增大时,调节动态电阻增大,以保持LED上的电压(电流)恒定。
    由于功率三极管或MOSFET管都有一个饱和导通电压,因此,输入的zui小电压必须大于该饱和电压与负载电压之和,电路才能正确地工作。
    开关调节器介绍
    上述驱动技术不但受输入电压范围的限制,而且效率低。在用于低功率的普通LED驱动时,由于电流只有几个mA,因此损耗不明显,当用作电流有几百mA甚至更高的高亮LED的驱动时,功率电路的损耗就成了比较严重的问题。开关电源是目前能量变换中效率zui高的,可以达到90%以上。Buek、Boost和Buck-Boost等功率变换器都可以用于LED的驱动,只是为
    了满足LED的恒流驱动,采用检测输出电流而不是检测输出电压进行反馈控制。下图(a)为采用Buck变换器的LED驱动电路,与传统的Buek变换器不同,开关管S移到电感L的后面,使得S源极接地,从而方便了S的驱动,LED与L串联,而续流二极管D与该串联电路反并联,该驱动电路不但简单而且不需要输出滤波电容,降低了成本。但是,Buck变换器是降压变换器,不适用于输入电压低或者多个LED串联的场合。
    上图(b)为采用Boost变换器的LED驱动电路,通过电感储能将输出电压泵至比输入电压更高的期望值,实现在低输入电压下对LED的驱动。优点是这样的驱动IC输出可以并联使用,有效的提高单颗LED功率。
    上图(c)为采用Buck—Boost变换器的LED驱动电路。与Buek电路相似,该电路S的源极可以直接接地,从而方便了S的驱动。Boost和Buck-Boosl变换器虽然比Buck变换器多一个电容,但是,它们都可以提升输出电压的值,因此,在输入电压低,并且需要驱动多个LED时应用较多。
    PWM调光知识介绍
    在手机及其他消费类电子产品中,白光LED越来越多地被使用作为显示屏的背光源。近来,许多产品设计者希望白光LED的光亮度在不同的应用场合能够作相应的变化。这就意味着,白光LED的驱动器应能够支持LED光亮度的调节功能。目前调光技术主要有三种:PWM调光、模拟调光、以及数字调光。市场上很多驱动器都能够支持其中的一种或多种调光技术。本文
    将介绍这三种调光技术的各自特点,产品设计者可以根据具体的要求选择相应的技术。
    PWMDimming(脉宽调制)调光方式——这是一种利用简单的数字脉冲,反复开关白光LED驱动器的调光技术。应用者的系统只需要提供宽、窄不同的数字式脉冲,即可简单地实现改变输出电流,从而调节白光LED的亮度。PWM调光的优点在于能够提供高质量的白光,以及应用简单,效率高!例如在手机的系统中,利用一个PWM接口可以简单的产生任意占空比的脉冲信号,该信号通过一个电阻,连接到驱动器的EN接口。多数厂商的驱动器都支持PWM调光。
    但是,PWM调光有其劣势。主要反映在:PWM调光很容易使得白光LED的驱动电路产生人耳听得见的噪声(audiblenoise,或者microphonicnoise)。这个噪声是如何产生?通常白光LED驱动器都属于开关电源器件(buck、boost、chargepump等),其开关频率都在1MHz左右,因此在驱动器的典型应用中是不会产生人耳听得见的噪声。但是当驱动器进行PWM
    调光的时候,如果PWM信号的频率正好落在200Hz到20kHz之间,白光LED驱动器周围的电感和输出电容就会产生人耳听得见的噪声。所以设计时要避免使用20kHz以下低频段。
    我们都知道,一个低频的开关信号作用于普通的绕线电感(wirewindingcoil),会使得电感中的线圈之间互相产生机械振动,该机械振动的频率正好落在上述频率,电感发出的噪音就能够被人耳听见。电感产生了一部分噪声,另一部分来自输出电容。现在越来越多的手机设计者采用陶瓷电容作为驱动器的输出电容。陶瓷电容具有压电特性,这就意味着:当一个低频电压纹波信号作用于输出电容,电容就会发出吱吱的蜂鸣声。当PWM信号为低时,白光LED驱动器停止工作,输出电容通过白光LED和下端的电阻进行放电。因此在PWM调光时,输出电容不可避免的产生很大的纹波。总之,为了避免PWM调光时可听得见的噪声,白光LED驱动器应该能够提供超出人耳可听见范围的调光频率!
    相对于PWM调光,如果能够改变RS的电阻值,同样能够改变流过白光LED的电流,从而变化LED的光亮度。我们称这种技术为模拟调光。
    模拟调光zui大的优势是它避免了由于调光时所产生的噪声。在采用模拟调光的技术时,LED的正向导通压降会随着LED电流的减小而降低,使得白光LED的能耗也有所降低。但是区别于PWM调光技术,在模拟调光时白光LED驱动器始终处于工作模式,并且驱动器的电能转换效率随着输出电流减小而急速下降。所以,采用模拟调光技术往往会增大整个系统的能耗。
    模拟调光技术还有个缺点在于发光质量。由于它直接改变白光LED的电流,使得白光LED的白光质量也发生了变化!除了PWM调光,模拟调光,目前有些产商的驱动器支持数字调光。具备数字调光技术的白光LED驱动器会有相应的数字接口。该数字接口可以是SMB、I2C、或者是单线式数字接口。系统设计者只要根据具体的通信协议,给驱动器一串数字信号,就可以使得白光LED的光亮发生变化。
 

(二)

 LED驱动设计技巧
    LED串并联驱动方式参考设计
    LED因其VF值特性原因做不到相同,随着温度及电流大小也有些VF值也会发生变化,一般不适合并联设计。但是有些情况又不得不并联解决多颗LED驱动成本问题,这些设计可以为大家做些参考。
    注意需要VF值分档,同档VF值的LED尽量使用在同一产品上面,产品可以保证误差电流在1mA之内、LED相对工作恒流状态。
    下图采用集成三极管可以保持每路LED电流一致,这些三极管在相同温度环境下、相同工艺条件生产出来的β值一样,可以保证每路电流基本一样。恒流部分在要求不是很高的条件下可以这样设计,稳定的电压或稳定的PWM伏值驱动稳压后的三极管偏压,做到基本恒流。
    下图采用精度较高的IC做恒流参考源,R可以设定IC输出电流,一经确定R阻值可以使用固定电阻代替。多三极管集成器件的使用可以减少IC的使用数量,从而减低设计产品成本。
    线性大功率LED恒流输出可以并联使用,在产品设计中我们往往找不到较大电流的驱动IC,一般2A以上就很少见,标称2A的IC也不一定可以极限使用。大于1A的IC工艺成本的原因MOS管都是外置,外置MOS管线路复杂,可靠性减低。并联使用是有效的设计办法。
    下图采用DD312并联参考设计直接驱动3颗6WLED。使能PWM控制信号需要适当的隔离,免相互干扰和驱动能力问题。EN使能电压要符合规格书要求,不要电压太高损坏EN脚。一般IC耐压是指负载和电源,没有注明激励电压请不要大于5V设计。
    像这种检测在LED的一端LED恒流驱动IC也可以并联设计驱动,实际上IC是单独工作的,zui后在并流一起。DC-DC方式是工作在较高的频率上,需要注意的是PCB布板时避免交叉设计,各自滤波、旁路电容要紧靠IC附近,负载电流zui后会和即可。
    当然可以2并,也可以3并或多并联设计,不过要提醒多试之!
    LED驱动设计参考案例及选型指导大功率LED温度保护参考设计
    *的温度保护居里点温度应该是80-90℃。zui高环境温度,夏天40℃,在夏日光暴晒50℃,50℃为zui高环境温度,一般大功率LED结温度在120℃是可以承受的,芯片到铝基板的热阻,规格书一般推荐10-15℃,那LED基板要保证在120-15=105℃。保留温差取50--105℃中间值77.5℃,一般电子元器件工作温度在85℃是可靠的,77℃是符合这个原则。
    建议77℃开始启动保护,85℃前大幅度的减低电流,90℃*完成产品温度保护功能。选者居里点在85℃左右的热敏电阻可以设计出理想电路。
 

上一篇: TI创新智能电网解决方案推动中国电网发展 下一篇: 如何区分真假IC
提示

请选择您要拨打的电话: