点式玻璃幕墙面板承载力及变形性能的有限元分析
时间:2014-09-22 阅读:1814
引言
点式支承玻璃为多点支承板,板本身在风力作用下受弯,且在支承点处应力集中程度很高,应力值也很大。 圆洞加工精度高、研磨仔细,残留微缺陷(如崩边、V 形缺口等)少,则应力集中程度低,应力较均匀,反之应力集中程度高,容易产生局部破裂。此外,板弯曲后边缘翘曲、板面转动,如果支承头可以随玻璃面板转动而转动, 则应力程度可大大降低[1]。点式支承玻璃的受力变形特性与有框、隐框玻璃有很大不同, 而现有规范未能充分考虑到点式支承玻璃的设计特点,因此有必要对点式支承玻璃变形性能及其影响因素进行研究。
研究目的
考查玻璃面板在孔边距相同、玻璃厚度不同,以及玻璃厚度相同、 面板孔边距不同这 2 种情况的内力及变形的变化情况。
将四角开孔面板模型、四点支承不开孔模型的分析结果与理论计算值进行对比,考查分析模型的合理性。
由于四角开孔面板模型所模拟的是玻璃孔位尖边未进行倒角的情况,其应力及变形值难免与真实施工有所不同,小孔的理论应力系数一般为3,即倒圆角后的孔边应力应为未倒角时的1/3。 本文分析的一个目的是验证此假定的合理性及通过分析确立未倒圆角的开孔面板模型结果数据与四点支承不开孔模型及理论计算值之间的。
荷载计算
国内的点式玻璃采用四点支承形式的较为普遍,常用的玻璃厚度有 8,10,12,15mm,玻璃板尺寸大多在 2m×2m 范围内。本文分析所采用的简化模型尺寸为 1.8m×2.0m,荷载按深圳地区 C 类场地 10m 高处取值。
风荷载标准值的计算方法
幕墙属于外围护构件,按 GB 50009-2001《建筑结构荷载规范》(2006 年版)计算:
式中:wk为作用在幕墙上的风荷载标准值(MPa);z为计算点标高,取10m。 代入得:
垂直于幕墙平面的分布水平地震作用标准值
式中:BE为动力放大系数,取 5.0;amax为水平地震影响系数zui大值,取 0.08;Gk为幕墙构件的重力荷载标准值(N);A 为幕墙构件的面积(mm2)。
作用效应组合设计值
式中:SGk为重力荷载作为*荷载产生的效应标准值;Swk、SEk分别为风荷载、 地震作用作为可变荷载产生的效应标准值;G、gw、gE为各效应的分项系数;yw、yE分别为风荷载、地震作用效应的组合系数。用于强度理论计算时,采用 Sw+0.5yESE设计值组合:q=1.4wk+0.5×1.3qEAk=1.4×1.262×10-3+0.5×1.3×1.23×10-4=1.847×10-3MPa; 用于挠度理论计算时,采用 Sw标准值:wk=1.262×10-3MPa。
有限元模型
单元选择及边界处理
玻璃面板选用的分析单元为壳单元 shell63。 由于点式玻璃幕墙所采用的是万向活动连接件,释放了部分孔边缘的平动约束,因而有效地消除了连接可能产生的面板的薄膜效应。 因此四角开孔面板模型支座的处理方式为:一孔周边施加 X、Y、Z 三向平动约束,一孔周边施加 X、Y 两向平动约束,一孔周边施加 X、Z 向平动约束, 还有一孔周边施加 Z 向平动约束,以此使得面板有一定的面内平动,更真实地模拟实际情况。四点支承不开孔模型索采用的是实单点加载方式, 加载思路与四角开孔面板模型大致相同。玻璃面板的有限元模型如图 1 所示。