深圳市长思远电子有限公司

智能制造网免费9

收藏

传感器

时间:2010-06-14      阅读:1006

 
  传感器的定义
  国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。
  的作用
  人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要。因此可以说,是人类五官的延长,又称之为电五官。
  ? 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而是获取自然和生产领域中信息的主要途径与手段。
  ? 在现代工业生产尤其是自动化生产过程中,要用各种来监视和控制生产过程中的各个参数,使设备工作在正常状态或*状态,并使产品达到的质量。因此可以说,没有众多的优良的,现代化生产也就失去了基础。
  ? 在基础学科研究中,更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种技术研究,如超高温、超低温、超高压、超高真空、*磁场、超弱磁砀等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测的出现,往往会导致该领域内的突破。一些的发展,往往是一些边缘学科开发的。
  ? 早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的。
  ? 由此可见,技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,技术将会出现一个飞跃,达到与其重要地位相称的新水平。
  
敏感元件的分类
①物理类,基于力、热、光、电、磁和声等物理效应。②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等类(还有人曾将敏感元件分46类)。
的分类
  可以用不同的观点对进行分类:它们的转换原理(工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
  根据工作原理,可分为物理和化学二大类 :
  工作原理的分类物理应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。
  化学包括那些以化学吸附、电化学反应等现象为因果关系的,被测信号量的微小变化也将转换成电信号。
  有些既不能划分到物理类,也不能划分为化学类。大多数是以物理原理为基础运作的。化学技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学的应用将会有巨大增长。
  常见的应用领域和工作原理列于下表。
  1.按照其用途,可分类为:
  压力敏和力敏 位置
  液面 能耗
  速度 加速度 
  射线辐射 热敏
  2.按照其原理,可分类为:
  振动 湿敏
  磁敏 气敏
  真空度 生物等。
  以其输出信号为标准可将分为:
  模拟——将被测量的非电学量转换成模拟电信号。
  数字——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
  膺数字——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
  开关——当一个被测量的信号达到某个特定的阈值时,相应地输出一个设定的低电平或高电平信号。
  
  在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用zui敏感的材料,即那些具有功能特性的材料,被用来制作的敏感元件。从所应用的材料观点出发可将分成下列几类:
  (1)按照其所用材料的类别分
  金属 聚合物 陶瓷 混合物
  (2)按材料的物理性质分  导体 绝缘体 半导体 磁性材料
  (3)按材料的晶体结构分
  单晶 多晶 非晶材料
  与采用新材料紧密相关的开发工作,可以归纳为下述三个方向:
  (1)在已知的材料中探索新的现象、效应和反应,然后使它们能在技术中得到实际使用。
  (2)探索新的材料,应用那些已知的现象、效应和反应来改进技术。
  (3)在研究新型材料的基础上探索新现象、新效应和反应,并在技术中加以具体实施。
  现代制造业的进展取决于用于技术的新材料和敏感元件的开发强度。开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于技术的、能够转换能量形式的材料。
  按照其制造工艺,可以将区分为:
  集成薄膜厚膜陶瓷
  集成是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。
  薄膜则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。
  厚膜是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
  陶瓷采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。
  完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。
  每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及参数的高稳定性等原因,采用陶瓷和厚膜比较合理。
静态特性
  的静态特性是指对静态的输入信号,的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。

  (1)线性度:指输出量与输入量之间的实际关系曲线偏离拟合直线的程度。定义为在全量程范围内实际特性曲线与拟合直线之间的zui大偏差值与满量程输出值之比。
  (2)灵敏度:灵敏度是静态特性的一个重要指标。其定义为输出量的增量与引起该增量的相应输入量增量之比。用S表示灵敏度。
  (3)迟滞:在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。对于同一大小的输入信号,的正反行程输出信号大小不相等,这个差值称为迟滞差值。
  (4)重复性:重复性是指在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
  (5)漂移:的漂移是指在输入量不变的情况下,输出量随着时间变化,次现象称为漂移。产生漂移的原因有两个方面:一是自身结构参数;二是周围环境(如温度、湿度等)。
动态特性
  所谓动态特性,是指在输入变化时,它的输出的特性。在实际工作中,的动态特性常用它对某些标准输入信号的响应来表示。这是因为对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。zui常用的标准输入信号有阶跃信号和正弦信号两种,所以的动态特性也常用阶跃响应和频率响应来表示。
的线性度
  通常情况下,的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
  拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为zui小的理论直线作为拟合直线,此拟合直线称为zui小二乘法拟合直线。
的灵敏度
  灵敏度是指在稳态工作情况下输出量变化△y对输入量变化△x的比值。
  它是输出一输入特性曲线的斜率。如果的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。
  灵敏度的量纲是输出、输入量的量纲之比。例如,某位移,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
  当的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
  提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
的分辨力
  分辨力是指可能感受到的被测量的zui小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,的输出不会发生变化,即对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。
  通常在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的zui大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与的稳定性有负相相关性。
电阻式
  电阻式是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式件。
  称重
  [2]称重是一种能够将重力转变为电信号的力--电转换装置,是电子衡器的一个关键部件。
  能够实现力--电转换的有多种,常见的有电阻应变式、电磁力式和电容式等。电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重。电阻应变式称重结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。因此电阻应变式称重在衡器中得到了广泛地运用。
电阻应变式
  中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。
压阻式
  压阻式是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
  用作压阻式的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式应用zui为普遍。
热电阻
  热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用zui多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。
  热电阻主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。
  热电阻分类:
  1.NTC热电阻:
  该类为负温度系数,即,阻值随温度的升高而减小;
  2.PTC热电阻:
  该类为正温度系数,即,阻值随温度的升高而增大。
温度
  1、室温管温:
  室温用于测量室内和室外的环境温度,管温用于测量蒸发器和冷凝器的管壁温度。室温和管温的形状不同,但温度特性基本一致。按温度特性划分,目前美的使用的室温管温有二种类型:1、常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。温度越高,阻值越小;温度越低,阻值越大。离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。兹附“南韩新基”的温度与电阻的对应关系表(中间为标称值,左右分别为zui小zui大值):-10℃→(57.1821─62.2756─67.7617)KΩ;-5℃→(48.1378─46.5725─50.2355)KΩ;0℃→(32.8812─35.2024─37.6537)KΩ;5℃→(25.3095─26.8778─28.5176)KΩ;10℃→(19.6624─20.7184─21.8114)KΩ;15℃→(15.4099─16.1155─16.8383)KΩ;20℃→(12.1779─12.6431─13.1144)KΩ;30℃→(7.67922─7.97078─8.26595)KΩ;35℃→(6.12564─6.40021─6.68106)KΩ;40℃→(4.92171─5.17519─5.43683)KΩ;45℃→(3.98164─4.21263─4.45301)KΩ;50℃→(3.24228─3.45097─3.66978)KΩ;55℃→(2.65676─2.84421─3.04214)KΩ;60℃→(2.18999─2.35774─2.53605)KΩ。除个别老产品外,美的空调电控使用的室温管温均使用这种类型的。常数B值为3470K±1%,基准电阻为25℃对应电阻5KΩ±1%。同样,温度越高,阻值越小;温度越低,阻值越大。离25℃越远,对应电阻公差范围越大。兹附“日本北陆”的温度与电阻的对应关系表(中间为标称值,左右分别为zui小zui大值):-10℃→(22.1498─22.7155─23.2829)KΩ;0℃→(13.9408─14.2293─14.5224)KΩ;10℃→(9.0344─9.1810─9.3290)KΩ;20℃→(6.0125─6.0850─6.1579)KΩ;30℃→(4.0833─4.1323─4.1815)KΩ;40℃→(2.8246─2.8688─2.9134)KΩ;50℃→(1.9941─2.0321─2.0706)KΩ;60℃→(1.4343─1.4666─1.4994)KΩ。这种类型的仅用于个别老产品,如RF7.5WB、T-KFR120C、KFC23GWY等。
  2、排气温度:
  排气温度用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。兹附“日本芝蒲”的温度与电阻的对应关系表(中间为标称值,左右分别为zui小zui大值):-30℃→(823.3─997.1─1206)KΩ;-20℃→(456.9─542.7─644.2)KΩ;-10℃→(263.7─307.7─358.8)KΩ;0℃→(157.6─180.9─207.5)KΩ;10℃→(97.09─109.8─124.0)KΩ;20℃→(61.61─68.66─76.45)KΩ;25℃→(49.59─54.89─60.70)KΩ;30℃→(40.17─44.17─48.53)KΩ;40℃→(26.84─29.15─31.63)KΩ;50℃→(18.35─19.69─21.12)KΩ;60℃→(12.80─13.59─14.42)KΩ;70℃→(9.107─9.589─10.05)KΩ;80℃→(6.592─6.859─7.130)KΩ;100℃→(3.560─3.702─3.846)KΩ;110℃→(2.652─2.781─2.913)KΩ;120℃→(2.003─2.117─2.235)KΩ;130℃→(1.532─1.632─1.736)KΩ。
  3.、模块温度:模块温度用于测量变频模块(IGBT或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。几个典型温度的对应阻值分别是:-10℃→(25.897─28.623)KΩ;0℃→(16.3248─17.7164)KΩ;50℃→(2.3262─2.5153)KΩ;90℃→(0.6671─0.7565)KΩ。
  温度的种类很多,现在经常使用的有热电阻:PT100、PT1000、Cu50、Cu100;热电偶:B、E、J、K、S等。温度不但种类繁多,而且组合形式多样,应根据不同的场所选用合适的产品。
  测温原理:根据电阻阻值、热电偶的电势随温度不同发生有规律的变化的原理,我们可以得到所需要测量的温度值。
光敏
  光敏是zui常见的之一,它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线、紫外线、光纤式光电、色彩、CCD和CMOS图像等。它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光不只局限于对光的探测,它还可以作为探测元件组成其他,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光是目前产量zui多、应用zui广的之一,它在自动控制和非电量电测技术[3]中占有非常重要的地位。zui简单的光敏是光敏电阻,当光子冲击接合处就会产生电流。
湿度资讯
  高分子电容式湿度通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为78.36,在T=20℃时为79.63。有机物ε与温度的关系因材料而异,且不*遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为3.0一3.8。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均胀系数可达到 的量级。例如硝酸纤维素的平均胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度的温度系数并非常数,而是个变量。所以通常生产厂家能在-10-60摄氏度范围内是线性化减小温度对湿敏元件的影响。
  比较的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。
  陶瓷湿敏是近年来大力发展的一种新型。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏迫切解决的问题。
  当前在湿敏元件的开发和研究中,电阻式湿度应当zui适用于湿度控制领域,其代表产品氯化锂湿度具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是。
  氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。
  氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂*涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿其*的长期稳定性是其它感湿材料不可替代的,也是湿度zui重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。
的迟滞特性
  迟滞特性表征在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的zui大差值△MAX与满量程输出F·S的百分比表示。
  迟滞可由内部元件存在能量的吸收造成。
  接口
  魏德米勒/执行器接口产品,可以通过加装相应的总线协议适配器,SAI产品可以直接连接到现场总线。可以支持Profibus-DP、CANopen、DeviceNet、Interbus和ASi现场总线协议。
  无源/执行器接口产品(SAI)
  防护等级达到IP68,可直接安装而无需防护。
  节约安装材料、时间、空间。
  提供4、6、8路的分配器,每路有3针、4针和5针的结构(提供一路和两路信号)。
  有带接线盖型(标准型)和电缆预制型。
  可另外提供金属外壳的产品,适用于食品行业。
  带有信号和电源的指示。
  有源/执行器接口产品(SAI)
  通过加装相应的总线协议适配器,SAI产品可以直接连接到现场总线。可以支持Profibus-DP、 CANopen、DeviceNet、Interbus和ASi现场总线协议。
  提供两种防护等级的产品:IP67(总线连接方式为圆形接头连接), IP68(总线连接方式为自装配型)。
  提供8DI、8DO、8DI/4DO、16DI、8DI/8DO五种输入输出的产品。
  的发展趋势
  采用新原理、开发新型;
  大力开发物性型(因为靠结构型有些满足不了要求);
  的集成化;

  的多功能化;
  的智能化(Smart Sensor);
  研究生物感官,开发仿生。
的工作过程举例
  向提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗*力。
生物
  生物的概念
  生物是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术*的一种*的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。各种生物有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物分析装置、仪器和系统。
  生物的原理
  待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。
  生物的分类
  按照其感受器中所采用的生命物质分类,可分为:微生物、免疫、组织、细胞、酶、DNA等等
  按照器件检测的原理分类 ,可分为:热敏生物、场效应管生物、压电生物、光学生物、声波道生物、酶电极生物、介体生物等。
  按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。
  UVA-1210是一个近紫外波光电,可见光范围不响应,输出电流与紫外指数呈线性关系。适用于手机、PDA、MP4等便携式移动产品测量紫外指数,随时提醒人们(特别是女士)紫外线的强度并注意防晒,也适用于紫外波段的检测器、紫外线指数检测器。
  紫外
  ■电气特性
  采用氮化镓基材料;
  PIN型光电二极管;
  光伏工作模式;
  对可见光无响应;
  暗电流低;
  输出电流与紫外指数成线性关系。
  符合欧盟RoHS指令,无铅、无镉
  ■典型应用
  测量紫外指数:手机、数码相机、MP4、PDA、GPS等携式移动产品;
  用于紫外检测器:全部紫外线波段的检测器、单UV-A波段检测器、紫外线指数检测器、紫外线杀菌灯辐照检测器。
  制造工艺
  以下步骤:1)以注塑方法,成型本体;2)将带有感应头的电路板安装在本体上,并通过焊锡进行焊接;3)盖上保护罩,通过卡扣及加密封胶工艺将感应头固定安装在本体上。应用本制造工艺,由于注塑过程和电路板安装过程是分开进行的,因而避免了现有技术中,在注塑过程中因温度高而损坏电路器件的现象。
  由于材料科学的发展,一系列无机非金属材料被用来制造,因为它们的一些性质,例如耐高温性、抗腐蚀能力、耐磨损等,对具有实用价值。
  陶瓷
  选用陶瓷材料是因为陶瓷材料具有下述性质:
   相对而言,通过控制它的成分和烧结条件等手段,陶瓷的微观结构比较容易调节。微观结构对陶瓷的所有特性都有重大影响,包括它们的电学、磁性、光学、热学和机械性能。
   由于陶瓷材料的耐高温和抗恶劣环境影响能力很强,所以常常将它们用于高温环境下的处理过程。
   陶瓷主要是由价格便宜的材料制备而成的,这就是说用它生产的价格也将比较低廉。
  陶瓷的结构特性是和下列因素密切相关的:晶粒(块体),分隔相邻晶粒的表面(晶粒间界),分隔晶粒表面和空间的界面,以及结构中的孔隙。由于这些各不相同的特性,既可利用陶瓷块体,也可利用陶瓷表面的性质来制造。
  目前已用于制备的陶瓷材料有以下几类:
   基于利用其晶粒物理特性的材料。
   基于利用其晶粒间界性质的材料。
   基于利用其表面特性的陶瓷材料。
  有时,无法严格地将某些陶瓷材料归入任何上述类型,因为的工作是基于不止一种的、而是多种特性的综合效应。表1.4示出了按照所利用的材料属性进行的陶瓷分类。一类是在其工作过程中利用陶瓷块体性质的陶瓷,这类具有材料物理性质的特征——介质,压电体,磁性或半导体。在这些中已经达到的材料特性水准已接近单晶材料所具有的特性水准。
市场预测
  2008年市场容量为506亿美元,预计2010年市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为市场增长zui快的地区,而美国、德国、日本依旧是市场分布zui大的地区。就世界范围而言,市场上增长zui快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。
  一些市场比如压力、温度、流量、水平已表现出成熟市场的特征。流量、压力、温度的市场规模zui大,分别占到整个市场的21%、19%和14%。市场的主要增长来自于无线、MEMS(Micro-Electro-MechanicalSystems,微机电系统)、生物等新兴。其中,无线在2007-2010年复合年增长率预计会超过25%。
  目前,的市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的市场,比如无线、光纤、智能和金属氧化等新型的出现与*的扩大。
常用术语
  1.
  能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。通常有敏感元件和转换元件组成。
  ① 敏感元件是指中能直接(或响应)被测量的部分。
  ② 转换元件指中能较敏感元件感受(或响应)的被测量转换成是与传输和(或)测量的电信号部分。
  ③ 当输出为规定的标准信号时,则称为变送器。
  2.测量范围
  在允许误差限内被测量值的范围。
  3. 量程
  测量范围上限值和下限值的代数差。
  4. 度
  被测量的测量结果与真值间的一致程度。
  5.重复性

  在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度:
  相同测量方法:
  相同观测者:
  相同测量仪器:
  相同地点:
  相同使用条件:
  在短时期内的重复。
  6. 分辨力
  在规定测量范围内可能检测出的被测量的zui小变化量。
  7. 阈值
  能使输出端产生可测变化量的被测量的zui小变化量。
  8. 零位
  使输出的值为zui小的状态,例如平衡状态。
  9. 激励
  为使正常工作而施加的外部能量(电压或电流)。
  10. zui大激励
  在市内条件下,能够施加到上的激励电压或电流的zui大值。
  11. 输入阻抗
  在输出端短路时,输入端测得的阻抗。
  12. 输出
  有产生的与外加被测量成函数关系的电量。
  13. 输出阻抗
  在输入端短路时,输出端测得的阻抗。
  14. 零点输出
  在室内条件下,所加被测量为零时的输出。
  15. 滞后
  在规定的范围内,当被测量值增加和减少时,输出中出现的zui大差值。
  16. 迟后
  输出信号变化相对于输入信号变化的时间延迟。
  17. 漂移
  在一定的时间间隔内,输出中有与被测量无关的不需要的变化量。
  18. 零点漂移
  在规定的时间间隔及室内条件下零点输出时的变化。
  19. 灵敏度
  输出量的增量与相应的输入量增量之比。
  20. 灵敏度漂移
  由于灵敏度的变化而引起的校准曲线斜率的变化。
  21.热灵敏度漂移
  由于灵敏度的变化而引起的灵敏度漂移。
  22. 热零点漂移
  由于周围温度变化而引起的零点漂移。
  23. 线性度
  校准曲线与某一规定直线一致的程度。
  24. 非线性度
  校准曲线与某一规定直线偏离的程度。
  25.长期稳定性
  在规定的时间内仍能保持不超过允许误差的能力。
  26. 固有频率
  在无阻力时,的自由(不加外力)振荡凭率。
  27. 响应

  输出时被测量变化的特性。
  28.补偿温度范围
  使保持量程和规定极限内的零平衡所补偿的温度范围。
  29. 蠕变
  当被测量机器多有环境条件保持恒定时,在规定时间内输出量的变化。
  30. 绝缘电阻
  如无其他规定,指在室温条件下施加规定的直流电压时,从规定绝缘部分之间测得的电阻值。
位移
         [4]?位移又称为线性,把位移转换为电量的。位移是一种属于金属感应的线性器件,的作用是把各种被测物理量转换为电量它分为电感式位移,电容式位移,光电式位移,超声波式位移,霍尔式位移。
  在这种转换过程中有许多物理量(例如压力、流量、加速度等)常常需要先变换为位移,然后再将位移变换成电量。因此位移是一类重要的基本。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。机械位移包括线位移和角位移。按被测变量变换的形式不同,位移可分为模拟式和数字式两种。模拟式又可分为物性型(如自发电式)和结构型两种。常用位移以模拟式结构型居多,包括电位器式位移、 电感式位移(见电感式)、自整角机、电容式位移(见电容式)、电涡流式位移(见电涡流式)、霍尔式位移等。数字式位移的一个重要优点是便于将信号直接送入计算机系统(见数字式)。这种发展迅速,应用日益广泛(见感应同步器、码盘、光栅式、磁栅式)。
  电位器式位移  它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。
压力
  压力[1]是工业实践中zui为常用的一种,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、*、石化、油井、电力、船舶、机床、管道等众多行业,
超声波测距离
  超声波测距离m314076,采用超声波回波测距原理,运用的时差测量技术,检测与目标物之间的距离,采用小角度,小盲区超声波,具有测量准确,无接触,防水,防腐蚀,低成本等优点,可应于液位,物位检测,*的液位,料位检测方式,可保证在液面有泡沫或大的晃动,不易检测到回波的情况下有稳定的输出,应用行业:液位,物位,料位检测,工业过程控制等
  

上一篇: 传感器定义
提示

请选择您要拨打的电话: