品牌
其他厂商性质
上海市所在地
光腔衰荡光谱CRD反射镜 波长4525nm 透射率14ppm
面议980nm 单模光纤反射镜 带宽±10nm 典型插入损耗0.8dB 反射率>99.5%
面议2inch 超光滑超高反射率反射镜 工作波长1650nm 反射率>99.99%
面议1060nm 单模光纤反射镜 带宽±10nm 典型插入损耗0.8dB 反射率>99.5%
面议1550nm 单模光纤反射镜 典型插入损耗0.8dB 带宽±10nm 反射率>99.5%
面议1310nm 单模光纤反射镜 带宽±10nm 典型插入损耗0.8dB 反射率>99.5%
面议2000nm 单模光纤反射镜 典型插入损耗0.8dB 带宽±10nm 反射率>99.5%
面议超光滑超高反射率反射镜 工作波长1572nm 反射率>99.99%
面议MaxR高反射涂层Cu铜反射镜 反射率>99.8% 透射波长范围9-11μm
面议镀金层Cu铜反射镜 反射率>98% 透射波长范围9-11μm
面议紫外波段氟化锂晶体窗片 光谱范围VUV 透射率>58% 24mmØ×10.5mm
面议紫外波段氟化锂晶体窗片 光谱范围UV/VIS/IR 透射率>58% 20.0mmØ×6.0mm
面议硒化锌材料对热冲击具有很高的承受能力, 使它成为高功率CO2激光器系统中的*佳光学材料。硬度只是多光谱级ZnS的2/3, 材质较软易产生划痕, 而且材料折射率较大, 所以需要在其表面镀制高硬度减反射膜来加以保护并获得较高的透过率。在其常用光谱范围内, 散射很低。在用做高功率激光器件时, 需要严格控制材料的体吸收和内部结构缺陷, 并采用*小破坏程度的抛光技术和光学质量的镀膜工艺。
广泛应用于激光,医学,天文学和红外夜视等领域中。
订购型号:MPZNSEBS50.8-50.8
参数:
IR Polished Zinc Selenide (ZnSe) beamsplitter
50.8 x 50.8 x 3mm 45° beamsplitter.
50% transmission / 50% reflection @45° for 2-14µm
参数详细信息:
透射波段范围 : | 0.6 to 21.0 um |
折射率: | 2.4028 at 10.6 um |
反射损耗: | 29.1% at 10.6 um (2 surfaces) |
吸收系数: | 0.0005 cm-1at 10.6 um |
吸收峰: | 45.7 um |
dn/dT : | +61 x 10-6/℃ at 10.6 um at 298K |
dn/du = 0 : | 5.5 um |
密度: | 5.27 g/cc |
熔点: | 1525℃ (see notes below) |
导热系数: | 18 W m-1 K-1at 298K |
热膨胀: | 7.1 x 10-6/℃at 273K |
硬度 : | Knoop 120 with 50g indenter |
比热容量 : | 339 J Kg-1聽K-1 |
Dielectric Constant : | n/a |
Youngs Modulus (E) : | 67.2 GPa |
Shear Modulus (G) : | n/a |
Bulk Modulus (K) : | 40 GPa |
弹性系数 : | Not Available |
Apparent Elastic Limit : | 55.1 MPa (8000 psi) |
泊松比 : | 0.28 |
Solubility : | 0.001g/100g water |
Molecular Weight : | 144.33 |
Class/Structure : | HIP polycrystalline cubic, ZnS, F43m |
No = Ordinary Ray
µm | No | µm | No | µm | No |
0.54 | 2.6754 | 0.58 | 2.6312 | 0.62 | 2.5994 |
0.66 | 2.5755 | 0.7 | 2.5568 | 0.74 | 2.5418 |
0.78 | 2.5295 | 0.82 | 2.5193 | 0.86 | 2.5107 |
0.90 | 2.5034 | 0.94 | 2.4971 | 0.98 | 2.4916 |
1.0 | 2.4892 | 1.4 | 2.4609 | 1.8 | 2.4496 |
2.2 | 2.4437 | 2.6 | 2.4401 | 3.0 | 2.4376 |
3.4 | 2.4356 | 3.8 | 2.4339 | 4.2 | 2.4324 |
4.6 | 2.4309 | 5.0 | 2.4295 | 5.4 | 2.4281 |
5.8 | 2.4266 | 6.2 | 2.4251 | 6.6 | 2.4235 |
7.0 | 2.4218 | 7.4 | 2.4201 | 7.8 | 2.4183 |
8.2 | 2.4163 | 8.6 | 2.4143 | 9.0 | 2.4122 |
9.4 | 2.4100 | 9.8 | 2.4077 | 10.2 | 2.4053 |
10.6 | 2.4028 | 11.0 | 2.4001 | 11.4 | 2.3974 |
11.8 | 2.3945 | 12.2 | 2.3915 | 12.6 | 2.3883 |
13.0 | 2.3850 | 13.4 | 2.3816 | 13.8 | 2.3781 |
14.2 | 2.3744 | 14.6 | 2.3705 | 15.0 | 2.3665 |
15.4 | 2.3623 | 15.8 | 2.3579 | 16.2 | 2.3534 |
16.6 | 2.3487 | 17.0 | 2.3438 | 17.4 | 2.3387 |
17.8 | 2.3333 | 18.2 | 2.3278 |
|
|
关于晶体切割:
During Chemical Vapour Deposition the small crystallite grains align with the direction of growth, and are
normal to the thickness of the sheet produced. For windows of normal thickness and aspect ratios the alignment of the grain therefore is rarely a problem as they are cut from the grown sheet such that within an optical window the grains align perpendicular to the surfaces. This is optimum orientation for lowest internal absorption and scatter.
With prisms, the cutting direction requires more consideration. It is recommended that the thickness of the strip material corresponds to the apex height of the prism. This ensures optimum crystallite orientation for most usual
prism applications.
For typical 45° prisms the most obvious use of material is shown in (A) but it
should be noted that this is not the optimum orientation.
The best choice is (B) and it also permits a higher limit on prism size or conversely allows thinner stock to be used. There is waste at the ends of the strip but this is small and so it may not be quite as economic as (A).
Cutting in direction (C) where the entire light beam runs at 90° to the grain
structure should be avoided completely if at all possible. Note that maximum available thickness of ZnSe and ZnS (FLIR) is approximately 60mm. Maximum available thickness of ZnS Cleartran is approximately 30mm
更新时间:2023/5/24 17:35:17