安科瑞电气股份有限公司

智能制造网中级4

收藏

城市智慧配电运维管理平台体系架构

时间:2023-10-18      阅读:471

摘要:智能化是综合管廊运维管理的发展方向,但多地先后建设的综合管廊运维管理平台都缺乏体系架构的统一标准。本文在分析综合管廊运维管理平台体系架构的研究现状的基础上,提出了一种5层智慧运维管理平台体系架构的建议标准。在物理层分析了综合管廊的功能需求。在数据层梳理并分析了运维数据来源的不同生命期和所处位置,提出了一种基于情景分类的高性能数据服务方法。在服务层提出了一种分段分舱的位置服务方法。对应用层功能进行了梳理、总结和分析,把核心运维工作分成了运营、维护、安全和施工四大子系统。*终实现了一个基于Web的综合管廊运维管理原型系统。

关键词:综合管廊;智慧运维;运维管理平台体系架构;管廊位置服务

0 引言

《全国城市市政基础设施建设“十三五”规划》提出,到2020年,综合管廊建设达到8640公里,目前已建与在建达到目标。《2020中国城市地下空间发展蓝皮书》统计,根据全国31个省级行政区划单位公布的城市地下综合管廊建设规划,合计拟建设城市地下综合管廊12000公里以上。

综合管廊是城市的生命线,包含了支持居民生活和工业的基本公共服务,需要得到高效的维护。但随着综合管廊规模不断扩大,里程数增加,纳入的管线种类越来越多,传统管理模式已无法满足综合管廊的运维需求,需要借助科技的力量来减轻运维人员的工作量,智能化是综合管廊运维管理的重要发展方向。多地先后都结合智能化手段建设了运维管理平台,但采用的信息技术、运维数据分类、功能模块划分、体系架构都缺乏统一标准。随着综合管廊智慧运维的发展,亟待建立统一的智慧运维体系架构,明确各层的需求、功能、服务、接口等。

1 管廊运维管理平台数据层

1.1运维数据来源

图2从综合管廊的各个生命期阶段及不同结构部分,分析了综合管廊运维数据的主要来源。

image.png

图2综合管廊运维数据来源分析

其中,管廊BIM建筑模型,主要包含规划设计阶段的几何信息,如模型的空间位置关系和构件尺寸等。管廊BIM结构模型,主要包含建造施工阶段的非几何信息,如结构材质、设备型号等。入廊管线BIM模型,包含铺设路径、管线用途、性质、使用单位等。内部设备设施BIM模型,包含附属设施几何尺寸、材质、构造、名称、型号等。完成施工建造后,应依据实际建造情况对设计阶段的BIM模型进行校验,以提交虚实一致、准确的BIM竣工模型。

3DGIS模型包含管线的起始点、监测设备、安全进出口等的位置。入廊管线BIM模型、内部设备设施BIM模型、和3DGIS模型,通常在建造施工阶段获取,也可以在之后的运维阶段新增。

管廊内基础监测信息主要包含环境类参数,如温湿度、氧含量、有毒气体、可燃气体浓度等,和介质类参数,如水流量、用气量、用电量、水压、气压、电缆接头温度、积水坑液位等。

运维数据主要包含运营、维护、安全、施工四大部分,如设备和传感器列表、员工信息、产品数据、供应商信息、设备维护计划和其他传统维护管理数据等。

数据层主要包含BIM模型数据库、GIS数据库、周边环境数据、实时监控数据、运维数据库等。

1.2基于场景的高性能数据服务

综合管廊运维会产生海量数据,且数据类型丰富,需要高性能的数据服务。GrossmannM等从数据项的更新频率及查询使用两个角度,对数据及其应用情景进行了研究。结合综合管廊的特征和GrossmannM的数据分类方法,可以对综合管廊运维数据进行如图3所示的分类,根据其对存储、读写、查询等的不同需求,从而相应的设置特定的数据服务器提供不同情景的高性能数据服务。

image.png

图3 基于更新频率和查询使用的情景分类高性能数据服务

(1)静态BIM数据。主要包括从前期设计和施工BIM竣工模型继承的综合管廊准确的建筑模型和结构模型、入廊管线模型、廊内的内部设备模型。

(2)静态位置数据。管廊本体结构、入廊管线、附属设施的位置坐标数据。例如,内部管线的起点、接口、终点、所属单位及周围环境、路径缩略图等。

(3)静态运维数据。即运维基础数据,例如,传感器和设备列表,入廊管线的铺设路径、管线用途、性质、管理单位等。

(4)动态位置数据。移动对象,如巡检人员、机器人等的动态位置数据。

(5)动态运维数据。例如,值班、巡检、作业、检修、维护、应急响应等数据。

(6)实时监测数据(历史和预测数据、时序数据)。

2 管廊运维管理平台服务层

综合管廊运维管理平台的服务层主要包含第三方的服务,如位置服务、BIM引擎、3DGIS引擎、工作流引擎等。

位置服务是综合管廊运维中常用的基础服务,可采取分段分舱的方式提供,包含ID查询、范围查询、*近邻居查询等功能,其层级规模具有高可伸缩性。综合管廊分段分舱示意图如图4所示。

image.png

图4综合管廊分段分舱示意

image.png

图5综合管廊分段分舱位置服务

图4对应的位置服务如图5所示,位置服务由一组层级结构的位置服务器协作提供,每个位置服务器负责一片地理区域。仅叶子服务器才负责存储在其负责区域中的对象的位置坐标。高层服务器服务区域由其下全部叶子服务器负责区域组成,且仅存储前向指针而不存储对象坐标。沿着前向指针可以逐级索引到叶子服务器,从而找到对象的实际位置坐标。叶子服务器1负责中间分段管廊的中间舱室,叶子服务器2负责中间分段管廊的右侧舱室。位置服务器1负责中间分段管廊所有舱室。叶子服务器3负责右侧分段管廊的中间舱室,位置服务器2负责右侧分段管廊所有舱室。根服务器负责全部管廊区域。

3 管廊运维管理平台应用层

应用层的核心功能主要划分为运营管理(Operations)、维护管理(Maintenance)、安全管理(Security)和施工管理(Engineering)四大子系统。

运营管理子系统主要包含供应商管理、安装公司管理、系统管理、组织机构管理、人员管理、资料管理、设备管线管理、合同管理、成本管理、设备设施运行状态管理、空间管理、日常巡视检查、进出管廊监管理、值班(日常值守)管理系统、指挥调度系统、绩效考核管理系统、设施损坏赔偿等。

维护管理子系统主要包含设施设备保洁、养护管理、维修管理、检测管理、大中修管理、更新改造、安全保护、设备资产管理、备品备件管理、技术档案管理、隐患管理、故障管理等。

安全管理子系统主要包含火灾和水淹应急预案、停电应急预案、暴力事件应急预案、传染病应变计划、烟霾(严重空气污染)应急计划、事故报告模式等。

工程管理子系统主要包含保护区控制区管理、施工监管、管线入廊管理、新管廊接管管理等。

4  原型系统

本文基于BIM+3DGIS技术,采用AutodeskRevit设计了综合管廊BIM模型,并导出为UDBX数据源格式,通过SupermapiDesktop软件生成工作空间与三维场景。将管廊模型、第三方公开的地理地图信息、该地理位置的数字高程地形地势信息、其他辅助构件等数据有机融合,形成一体化的三维场景,方便了用户对使用现场环境有直观、便捷、高效的理解。原型系统实现了BIM可视化漫游、环境监测、入廊管线监测、附属设施监测、运维管理等功能(图6)。

image.png

图6基于BIM和3DGIS的综合管廊智慧运维管理平台原型系统

5 AcrelEMS-UT综合管廊能效管理平台

5.1平台概述

AcrelEMS-UT综合管廊能效管理平台集电力监控、能源管理、电气安全、照明控制、环境监测于一体,为建立可靠、安全、高效的综合管廊管理体系提供数据支持,从数据采集、通信网络、系统架构、联动控制和综合数据服务等方面的设计,解决了综合管廊在管理过程中存在内部干扰性强、使用单位多及协调复杂的根本问题,大大提高了系统运行的可靠性和可管理性,提升了管廊基础设施、环境和设备的使用和恢复效率。

5.2平台组成

安科瑞城市地下综合管廊能效管理系统是一个深度集成的自动化平台,它集成了10KV/O.4KV变电站电力监控系统、变电所环境监控系统、智能马达监控系统、电气火灾监控系统、消防设备电源系统、防火门监控系统、智能照明系统、消防应急照明和疏散指示系统。用户可通过浏览器、手机APP获取数据,通过一个平台即可全局、整体的对管廊用电和用电安全进行进行集中监控、统一管理、统一调度,同时满足管廊用电可靠、安全、稳定、高效、有序的要求。

5.3平台拓扑

5.4平台子系统

5.4.1电力监控

电力监控主要针对10/0.4kV地面或地下变电所,对变电所高压回路配置微机保护装置及多功能仪表进行保护和监控,对0.4kV出线配置多功能计量仪表,用于测控出线回路电气参数和用能情况,可实时监控高低压供配电系统开关柜、变压器微机保护测控装置、发电机控制柜、ATS/STS、UPS,包括遥控、遥信、遥测、遥调、事故报警及记录等。

5.4.2环境监测

环境监测包括温湿度、烟感温感、积水浸水、可燃气体浓度、门禁、视频、空调、消防数据的采集、展示和预警,同时也可接入管廊舱室内的水泵和通风排烟风机等设备集成的第三方系统完成管廊环境综合监控。

5.4.3电气安全

 AcrelEMS-UT能效管理系统针对配电系统的电气安全隐患配置相应的电气火灾传感器、温度传感器,消防设备电源传感器、防火门状态传感器,接入消防疏散照明以及指示灯具的状态实时显示,并且对UPS的蓄电池温度、内阻进行实时监视,发生异常时通过声光、短信、APP及时预警。


上一篇: 浅谈IT隔离电源系统在医院电气设计中的应用 下一篇: 浅谈红外测温技术在变电站运维中的应用
提示

请选择您要拨打的电话: