上海西邑电气技术有限公司

智能制造网免费7

收藏

西门子6ES73231BL004AA1

时间:2018-04-08      阅读:423

1.液压伺服系统简介
液压伺服系统以其响应速度快(相对于机械系统)、负载刚度大、控制功率大等*的优点在工业控制中得到了广泛的应用。而电液伺服系统是通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

1.1 液压伺服系统的组成
液压伺服系统主要由以下几部分组成(如图 1):

  • 储油缸
  • 油泵
  • 比例换向阀
  • 液压缸
  • 测量反馈系统
  • 控制系统


图1. 液压伺服系统

使用TCPU控制液压伺服系统时,TCPU就是该系统中的控制器;TCPU可以通过脉冲或者模拟量输出来控制比例换向阀的开度和方向从而控制液压缸的运动方向和速度;测量反馈系统可以由设备编码器或者模拟量信号通过IM174接口模板或模拟量输入模板将信号反馈给TCPU。

1.2 液压伺服系统与电气伺服系统区别
控制电气伺服系统时,执行机构(通常为伺服电机)能够根据速度给定改变运行速度,响应快,动态特性好,给定与输出之间呈线性比例关系;而液压伺服系统由其液压油的物理特性决定了其响应速度和动态特性都较低,而且在液压伺服系统启动、停止以及换向时都会出现大滞后性,这样就导致输出给定与执行速度之间的关系并不是线形的(如图 2),这样,一旦我们还以控制线性电气轴的模型来控制非线性液时,速度会非常不稳定,而且位置闭环会不停的修正由速度不稳定所带来的位置偏差,这时液压执行机构就会来回跳动或者抖动,造成定位误差大甚至损坏机械设备。所以我们在控制液压伺服系统时就应该先了解该系统的给定与输出之间的关系,确定补偿曲线来保证执行机构平稳运行。


图 2. 给定与实际速度的关系

在 TCPU 中,补偿曲线可以由多种方法来确定,例如 S7T Config 中的 Trace 工具,根据输出不同的给定值和实际的速度值来确定差补点,将差补点的值以表格的方式添入到 Cam Disk (凸轮盘)中。
本文主要介绍使用自动获得补偿曲线功能块 FB 520“GetCharacteristics” 和 FB 521“WriteCamData”来确定差补曲线。


2.系统结构及软硬件要求

2.1 系统结构
本系统的给定和反馈均使用高性能ET200M带AI/AO模板来实现(如图 3):


图 3. 系统结构图

2.2 硬件及软件要求

名称数量订货号
CPU 315T-2 DP16ES7315-6TG10-0AB0  Or 6ES7315-6TH13-0AB
Firmware: V2.6
Or CPU 317T-2 DP16ES7317-6TJ10-0AB0  Or 6ES7317-6TK13-0AB0
Firmware: V2.6
Micro Memory Card 4MB16ES7953-8LM20-0AA0
Interface module IM17416ES7174-0AA00-0AA0
Or ET200M / ET200S16ES7 153-2BA02-0XB0 or 6ES7 151-1BA02-0AB0
STEP 716ES7810-4CC08-0YA7 Version: V5.4 以上
S7 Technology16ES7864-1CC41-0YX0 Version: V4.1 以上

表 1. 硬件及软件要求


3.项目配置过程:

3.1 硬件组态
在 SIMATIC 管理器中创建新的项目并添加一个 SIMATIC 300 站点。根据实际硬件配置硬件组态,本例中使用模拟量输入输出作为给定和反馈信号。组态模拟量输入输出并分配 I/O 地址(图 4);


图 4. 硬件组态

3.2 在 S7T Config 中配置液
在 S7T Config 的浏览器中,双击“插入轴”(Insert axis)(图 5)


图 5. 插入液

在“常规”(General) 选项卡中,选择“速度控制”(Speed control) 和“定位”(Positioning) 控制然后打开轴向导;
在轴类型话框中,选择“液压”(Hydraulic) 轴类型。 将阀类型定义为“Q 阀”(Q valve)(图 6)。


图 6. 选择轴的类型

配置完液的物理单位及模度后,进入到输入输出的配置界面,并选择其输出方式模拟量输出模板(图7 );


图 7. 选择输出方式

选择输出设备为模拟量输出模块,填入相应参数:

  • Output:模拟量输出地址
  • Format:ET200M/ET200S选择Left-justified
  • Resolution:模拟量模板的输出精度(不含符号位)

点击继续进入到位置反馈参数界面,填入使用的模拟量输入的地址(图 8):


图 8. 选择反馈方式

点击继续,进入到位置反馈参数分配界面(图 9):


图 9. 反馈参数分配

相关输入参数:

  • Factor/Offset:输入系数及偏置
  • Usable bits: 模拟量模板的输入精度(不含符号位)
  • Minimum value:输入的zui小值
  • Maximum value:输入的zui大值

分配完所有参数,单击“完成”(Finish) 退出轴组态对话框。

3.3 建立补偿曲线凸轮盘
根据前文所提到的,液压伺服系统需要确定一条补偿曲线来线性化输出变量与液速度之间的关系。在 TCPU 中通过使用凸轮盘(Cam Disk)工艺对象来确定补偿曲线,液压伺服轴的补偿曲线反映了液压比例阀输出给定与液速度之间的对应关系。由于本文使用功能块 FB 520 “GetCharacteristics” 和 FB 521“WriteCamData” 来自动获得补偿曲线,所以需要建立两个凸轮盘(Cam Disk)来确定补偿曲线。其中*个凸轮盘是用来测量、寻找补偿点,而测量后的结果会写入到另外一个凸轮盘,这个被写入的凸轮盘也就是当前液压伺服系统的zui终补偿曲线。
在 CAMS 下面建立两个凸轮盘,分别取名为:Cam_Profile 与 Cam_Reference,并填入两个差补点描绘一条输出给定与执行速度间的参考关系曲线,如图 10:


图 10. 建立补偿曲线凸轮盘

做好以上工作后,将 S7T-Config 存盘编译,并将组态好的轴和凸轮盘等工艺对象生成相应的工艺对象数据块,并下载到 TCPU。本例中工艺对象数据块对应为:

  • Axis:DB3;
  • Cam_Reference: DB4;
  • Cam_Profile: DB5;


4.编写用户程序

4.1 使用 FB 520 和 FB 521 自动获得补偿曲线
FB 520 “GetCharacteristics” 和 FB 521“WriteCamData”两个功能块并没有在 S7-Tech 库中提供,所以需要到以下链接下载例子项目,并将项目中的FB520和FB521复制到自己的项目中来。
下载链接:27731588

4.2 FB 520 和 FB 521 的功能介绍

4.2.1 FB 520 “GetCharacteristics”
通过该功能块,系统能够执行测量并得到当前液压系统的补偿曲线,并将相应的Cam Disk激活为当前液压系统的Profile。其内部调用结构如图 11:


图 11. FB 520 结构

4.2.2 FB 521 “WriteCamData”
该功能块能够将测量的补偿曲线写入到相应的Cam Disk中。其内部调用结构如图 12:


图 12. FB 521 结构

由这两个功能块的结构图可以看出,其内部调用了很多S7-Tech里面的功能块,所以需要将这些功能块复制到当前的项目中来。而且,可以看到在FB520功能块内部已经调用了FB521,所以只要保证FB 521在项目中存在就可以了,不需要在程序中单独调用。表 2 为FB520,FB521所使用到的S7-Tech功能块:

PLC-Open FB功能
FB 402 “MC_Reset”复位可能出现的错误
FB 405 “MC_Halt”停止轴运动
FB 407 “MC_WriteParameter”写系统参数
FB 414 “MC_MoveVelocity”使轴运动,并可改变其运行速度
FB 434 “MC_CamClear”删除一个凸轮盘中的所有插补点
FB 435 “MC_CamSectorAdd”插入一个新的插补点到凸轮盘中
FB 436 “MC_CamInterpolate”修改凸轮盘的插补点
FB 439 “MC_SetCharacteristics”激活一个凸轮曲线作为液压阀的特性曲线

表 2. 使用的 S7-Tech 功能块

4.2.3 FB520的管脚及其定义(图 13 及表 3):


图 13. FB 520 管脚定义

名称含义
输入参数
Axis液工艺DB号
CamReference执行测试时的参考凸轮盘的工艺DB号
CamProfilzui终要写入的凸轮盘的工艺DB号
Enable使能
Mode执行模式
maxDistance执行测试时的zui大移动距离
JogPos正向点动
JogNeg负向点动
JogVelocity点动速度
输出参数
Done测量完成
Busy
Error有错误
ErrorID错误代码
ErrorSource错误源
State当前状态
ActiveCam当前执行的凸轮盘的工艺DB号

表 3. FB 520 管脚定义

4.3 在OB1中调用FB520(图 14)


图 14. 在 OB1 中调用 FB 520

使用步骤:

  • 将工艺对象的 DB 号填入到相应的管脚上;
  • 通过点动(Jog)管脚,将液移动到要运行的zui初始位置;
  • 在 maxDistance 管脚上填入要执行测量的zui大行程,这里建议填入的行程距离要大于正常运行时的工作行程,但注意不要超过液压缸的zui大行程;
  • 准备工作就绪后,将使能位(Enable)置 1,这时液压缸会启动检测过程,可以通过状态字(State)观察当前的执行情况。
  • 当测量结束后,完成位(Done)置 1,表示测量工作已经完成,而且测量出来的补偿曲线已经写入到 Cam_Profile 凸轮盘中。

4.4 FB 520 “GetCharacteristics” 的测量原理(图 15)

  • TCPU 通过模拟量输出将给定发送给液压阀,并激活其动作;
  • 液压阀开启后,相应流量的液压油注入到液压缸并推动液运动;
  • 液的移动速度由位置反馈系统检测并存储在 TCPU 内;


图 15. FB 520 的测量原理

4.5 FB 520 “GetCharacteristics” 补偿曲线的写入过程(图 16):

  • 当所有位置上的测量值记录完成后会以凸轮盘的形式存在 TCPU 中;
  • 凸轮盘的坐标分别对应的是阀的给定开度和液的当前速度;
  • zui后 TCPU 会执行 FB439 MC_SetCharacteristic 将当前凸轮盘激活为液的补偿曲线。


图 16. 补偿曲线的写入过程

4.6 FB 520 “GetCharacteristics” 执行时的基本步骤

  • 初始化 FB 520:
    生成的线性参考凸轮盘被激活,并且液被设置为闭环模式;
  • 检测液的死区:
    根据 TCPU 发出的目标给定以及液的响应时间计算出死区;
  • 由正方向开始测量补偿曲线:
    由正方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量补偿点,测量结束后回到初始位置;
  • 由负方向开始测量补偿曲线:
    由负方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量偿点,测量结束后回到初始位置;
  • 写入并激活测量出的补偿曲线:
    TCPU 将测量的补偿曲线写入到另外一个凸轮盘,并将其激活为当前液的zui终偿曲线。

4.7 FB 520 “GetCharacteristics” 的 42 种执行状态(图 17):

  • 0-41:初始化
  • 42-44:死区检测
  • 45-47:移动到初始位置
  • 50-101:正向检测
  • 110-111:移动到正向zui大位置
  • 120-171:反向测量
  • 180-181:移动到初始位置
  • 190-210:写入并激活补偿曲线


图 17:FB 520 的42种执行状态(State)


5.执行结果
在FB520执行自动检测之后,可以通过在线的方式察看测量出来的补偿曲线,如图 18:


图 18. 在线察看测量出来的补偿曲线

到这里为止,液压伺服轴的补偿曲线已经建立,在 TCPU 中就可以使用其定位功能块对液进行控制了,控制器会自动使用补偿曲线中的速度对应关系调节输出。有关更多液的使用请参考 TCPU 手册

1 系统概述
MASTERDIVE 家族的6SE70系列变频器包含VC和 MC两种变频器。
MC 专门应用于运动控制系统,广泛应用于精加工行业:车床,印刷,纺织,机械加工等。
使用MC控制器可实现如下功能:
    •® 速度控制
    •® 位置控制
    •® 装置之间的角同步控制
MC中包含模块化的软件设计:
    •® 强大的自由功能块(包含基本定位功能)
    •® 工艺软件包F01
MC系统的功率部分与VC的功率部分相同,按照不同装置结构可划分为(见图1):



图1

其中增强书本型装置,控制板与功率元件为一体,以得到更加紧凑的结构,而书本型装置和装机装柜型装置则拥有独立的电子箱,控制板可以插拔,方便更换。更换书本型或装机装柜型装置的控制板后,操作如下:



图2


2 编码器的使用
MC要实现定位控制,需要使用编码器作为速度和位置的反馈信号。
编码器在安装使用上分为电机编码器,外部编码器。二者可以同时使用,也可以单独使用。
电机编码器,安装在电机轴上,可以测量电机的转速以及电机的位置,同时可以通过机械设备的变比关系,反映出机械设备的位置。
外部编码器,安装在机械设备上,用于检测设备的位置,可以更准确地反映zui终机械设备的位置。
电机编码器需要将编码器板装在C槽。
可以使用的编码器类型,以及编码器接口模板如图3所示


图3

 

3 电机类型
MC控制器可以驱动同步电机,异步电机, 类型通过P095进行选择。(图4)

 

图4

注意:
在使用永磁同步电机时,需要注意转子零点的问题。
西门子标准同步伺服电机在出厂时,已经保证编码器的零点与转子零点对应,此时需要保证动力电缆的相序U,V,W与变频器的输出相序相同。
对于没有确定转子极位置的同步电机,或者用户自己更换了编码器,需要进行转子零点的校正,否则会导致电机失控。

上一篇: 西门子6ES7 952-1KP00-0AA0 下一篇: 6AV2124-1QC02-0AX0
提示

请选择您要拨打的电话: