光放大器的原理与应用
时间:2016-04-16 阅读:3927
光放大器的原理与应用
光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成, 可以作为前置放大器、线路放大器、功率放大器,是光纤通信中的关键部件之一。其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。一个好的光放大器应具有输出功率高、放大带宽宽、噪声系数低、增益谱平坦等特性。目前光放大器形式主要有三种:1) 利用激光二极管(LD)制作的半导体光放大器(SOA);2) 利用掺稀土光纤制作的光纤放大器,其中以掺铒光纤放大器(EDFA)为主;3) 利用常规光纤非线性效应制作的分布式光放大器,典型的是光纤拉曼放大器(FRA)。下面对SOA、EDFA和FRA光放大器进行比较。
1.半导体光放大器
现代光放大器中zui早出现的是半导体光放大器(SOA)。它的基本结构、原理和特性与半导体激光器非常相似。它们工作原理都是基于激光半导体介质固有的受激辐射光放大机制,所不同的在于SOA去掉了构成激光振荡的谐振腔,并且SOA是由电流直接激励驱动的。
半导体光放大器的优点是尺寸小、频带宽、增益高;但缺点是与光纤的耦合损耗太大、易受环境温度的影响、工作稳定性较差。但半导体光放大器容易集成,适宜同光集成和光电集成电路结合使用。
通常光半导体放大器分为两大类:一种是将普通半导体激光器用作光放大器,称为法布里——泊罗(F-P)半导体激光放大器(FPA),另一种是在F-P激光器的两个端面上涂上抗反射膜,以获得宽频、低噪的高输出特性。由于这种放大器是在光行进过程中对光进行放大的,故被称为行波式光放大器。
由于半导体光放大器的工作原理决定了其放大增益不是很高,因此半导体放大器在现代光通信系统中作为纯粹功率放大应用较少,它更多的是被用作高速通信网中光开关、光复用/解复用器和波长变换器等光信号处理模块。
2.掺铒光纤放大器
掺饵光纤放大器(EDFA)主要由合波器WDM、泵浦激光器(大功率LD)、光隔离器和掺铒光纤(长10~30m)构成。EDFA的研制成功,是光通信发展的一个“里程碑”。它的出现打破了光纤通信传输距离受光纤损耗的限制,使全光通信距离延长*千公里,为光纤通信带来了革命性的变化。
掺铒光纤放大器主要由掺铒光纤、泵浦光源、耦合器、光隔离器等组成。有同(前)向泵浦、反(后)向泵浦和双向泵浦3种泵浦方式,其区别在于信号光与泵浦光的注入方向不同。同向泵浦也称为前向泵浦,它的信号光与泵浦光以同一方向从掺铒光纤的输入端注入。反向泵浦也称为后向泵浦,它的信号光与泵浦光以两个不同方向注入进掺铒光纤。双向泵浦就是同向泵浦与反向泵浦合并的方式。三种泵浦方式的结构图如图1所示。三种泵浦方式的性能比较见表1。
泵浦效率=信号光输出功率/泵浦光功率 噪声
同向泵浦 61% 在未饱和区,同向泵浦式掺铒光纤放大器的噪声系数zui小,由于输出功率加大将导致粒子反转数的下降,故在饱和区,噪声系数将增大。
反向泵浦 76%
双向泵浦 77%
EDFA是利用掺铒光纤中掺杂的稀土离子在泵浦光源(波长980nm或1480nm)的作用下,形成粒子数反转,产生受激辐射,辐射光随入射光的变化而变化,进而对入射光信号提供光增益。其放大范围为1530~1565nm,增益谱比较平坦的部分是1540~1560nm,几乎可以覆盖整个WDM系统的1550nm工作波长范围。
EDFA的优点是:1)通常工作在1530~1565nm光纤损耗zui低的窗口;2)增益高,在较宽的波段内提供平坦的增益,是WDM理想的光纤放大器;3)噪声系数低,接近量子极限,各个信道间的串扰极小,可级联多个放大器;4)放大频带宽,可同时放大多路波长信号;5)放大特性与系统比特率和数据格式无关;6)输出功率大,对偏振不敏感;7)结构简单,与传输光纤易耦合。
缺点是:1)在第3窗口以上的波长,光纤的弯曲损耗较大,而常规的EDFA不能提供足够的增益,增益带宽只有35nm,仅覆盖石英单模光纤低损耗窗口的一部分。制约了光纤能够容纳的波长信道数;2)不便于查找故障,泵浦源寿命不长;3)存在基于泵浦源调制和光时域反射计(OTDR)的监测与控制技术问题,控制内容包括输出功率的控制和不同波长通道的增益均衡,EDFA的增益对100kHz以上的高频调制不敏感,对低于1kHz的调制,EDFA的输出信号会产生失真。
3.光纤拉曼放大器(FRA)
EDFA的出现确实*的促进了现代光通信系统的发展。但是随着现代光网络进一步发展,一方面EDFA已经不能满足现有系统对超大容量的要求,另一方面EDFA也会带来光信号信噪比的不断恶化而不能满足超长距离传输的要求。为此,必须要提出一种既要满足超宽带宽要求,又能满足超低噪声要求的新型光放大器。
光纤拉曼放大器(FRA)由于其自身固有的全波段可放大、噪声指数小等特性,成为了新一代放大器的。FRA是基于受激拉曼散射(SRS)机制的光放大器,此光放大技术是在近年来大功率半导体激光器研制成功后才真正走向实用的。在许多非线性介质中,SRS是非线性光学中一个很重要的非线性效应,它将一小部分入射功率由一光束转移到频率比其低的斯托克斯波上;如果一个弱信号与一个强泵浦光波同时在光纤中传输,并且弱信号波长位于泵浦光波的拉曼增益谱带宽之内,则此弱信号可被该光纤放大。
FRA可分为分立式FRA和分布式FRA,前者所用的光纤增益介质比较短,一般在10km以内,对泵浦功率要求很高,一般在几到十几瓦,可产生40dB以上的高增益,用来对信号光进行集中放大,主要用于EDFA无法放大的波段;后者所用的光纤比较长,一般为几十公里,泵源功率可降到几百毫瓦,主要辅助EDFA用于DWDM通信系统性能的提高,抑制非线性效应,降低信号的入射功率,提高信噪比,进行在线放大。由于FRA增益波长由泵浦光波长决定,不受其它因素限制,因此可为任何波长提供增益,这使得FRA可以在EDFA所不能放大的波段实现放大,并可在1292~1660nm光谱范围内进行光放大,使用多个泵源还可得到比EDFA宽得多的增益带宽(后者由于能级跃迁机制所限,增益带宽只有80nm),这对于开发光纤的整个低损耗区1270~1670nm具有*的作用。
FRA具有带宽宽、增益高、噪声低、串扰小、温度稳定性好等特点,因此与常规EDFA混合使用时,可大大降低系统的噪声系数,增加传输距离;FRA的增益介质为光纤,因此与光纤系统有良好的兼容性,可制成分立式或分布式放大器,分布式FRA具有在线放大、延长传输距离、实现长距离无中继传输和远程泵浦的功能,尤其是适用于海底光缆通信等不方便设立中继器的场合;由于放大是沿着光纤分布作用而不是集中作用,所以输入光纤的光功率大为减少,从而非线性效应,尤其是四波混频效应大大减少,因此适用于大容量DWDM系统。FRA不足之处在于需要特大功率的泵浦激光器,且一个泵浦的FRA增益带宽较窄。
在拉曼放大器的实际应用中,通常是采用拉曼放大器同EDFA混和使用的策略。这种混合放大策略在DWDM超长传输系统中获得了广泛的使用。EDFA作为光功率放大器和光前置放大器,而EDFA和拉曼的混合放大器作为光线路放大器。