康志刚:工业大数据需要重构理论体系
- 发布时间:2016-07-25
- 浏览次数:31847
康志刚:工业大数据需要重构理论体系
2016年,由中国数据官联盟与网加时代网发起并承办,北京大学信息化与信息管理研究中心、中国新一代IT产业推进联盟、数邦客协办的“影响中国大数据产业进程100人”大型人物专访活动全面启动,被采访对象分别来自政府、产、学、研、企各个领域,他们将从不同角度,不同层面向大家阐述当前大数据产业热点、难点、疑点问题,为中国大数据产业健康、持续发展探索经验、保驾护航,敬请关注!
第三十一期专访人物:中国数据官联盟专家组成员,武汉优博睿科技有限公司创始人康志刚
本期特邀嘉宾中国数据官联盟发起人鲁四海,就工业大数据向康志刚先生发起提问。
鲁四海:说到工业大数据,离不开制造企业转型升级,那么制造企业为什么要转型升级,到底还缺什么?
康志刚:说转型,好像比较婉约一点,也看不出紧迫感。我个人认为转型更大程度上属于技术手段触发的局部的商业模式调整问题。从我们持续近十年来的研究,我们认为,它就是一场工业革命。为什么呢?当前制造业所面临的革新首先是全球性的,它具有极高的是残酷性,是新一轮工业标准制定争夺战,是定价权的战争。既然是新标准制定,那结果就是制定标准、输出标准。如果我们对此后知后觉,认为它仅仅是个转型,将错失千载难逢的、参与本轮工业革命标准制定的窗口机会。前三次工业革命,中国都没能参与制定标准,我们国家的工业基本上是“被标准殖民”,“被技术绑架”的。所以只能做“工业大国”,“世界工厂”。我们必须要有清醒的认识,我们想要成为“工业强国”,必须要抓住先机,参与制定被称为第四次工业革命“DT技术革命”的标准。
有人质疑,前三次工业革命都没能赶上,这次数据技术革命咱们有资格参加吗?要回答这个,我们的制造业必须要补课。但这个课,我首先申明不是补什么“工业2.0”、“3.0”的课。上自动化只是个技术问题,不算是补课。这一轮工业革命也不是信息化加上自动化。所以国家的“两化深度融合”战略,某种意义上与这一轮“DT技术革命”没有什么关系。为什么呢?今天的“两化深度融合”样板企业有不少,它们实现智能制造了吗?实现“DT技术革命”了吗?没有。我们可以肯定的说,本轮工业革命就是“数据驱动”要革掉“管理驱动”的命。“两化深度融合”的样板企业为什么没有出现“工业大数据”?为什么没有实现“数据驱动”?“管理驱动”为什么会被革命?“管理驱动”如果被革命,那么以“管理驱动”为导向的一大堆管理应用系统如ERP、MES、CRM、SCM等的命运如何?先把这些问题都理清楚,才是我们的制造业首先需要补的课。凡是都有因果。要搞清楚这些问题,我们必须认清这场来势汹汹的工业革命的因果。
鲁四海:在您看来工业4.0首先不是解决技术问题,而是重构整个理论体系,这又是为什么呢?
康志刚:好的,我看先来看一下第四次工业革命的起因,很直接的就是第三次工业革命“管理驱动”为导向的信息技术革命未能解决,而又是工业制造业迫切需要解决的问题。也就是说它一定是个共性的问题。我们先来看看,到底是个什么样的全球性共性问题呢。
这是我们研究分析的结果:即使是在信息化与自动化高度融合的制造业,无论是内企还是外企,全球范围内的工业还面临着三个核心的瓶颈痛苦,这也是信息技术革命无法突破的,具体如下:
其一、对内的总体成本控制能力失效。为什么呢?在全球工业企业的财务报表上,无一例外都没有“浪费”两个字。浪费都被“包装”为成本。制造业花了巨资实施的管理应用系统变成了电子台账,无法量化浪费,持续消除浪费。
其二、对外的客户服务能力有限。即质量、交期、进度为导向的客户服务、客户体验以及客户维护服务能力不能有效保障。
其三、被供应链绑架。产业链分工细化导致供应链体系复杂,因所有的制造业都被前两个问题所束缚。实际上,制造业对外的客户服务能力有限,都是被供应链绑架的。这在内企更为突出,供应链呈现的就是“群体性互害模式”。
以上三个问题归一,制造业实际上是“被数据绑架”。所以“中层干部集体数据造假绑架高层”,绝不是空穴来风啊。制造业对内无法通过数据量化浪费,无法消除浪费。紧接着导致了第二个、第三个一连串的问题。
以上三个问题是“管理驱动”为导向的信息技术革命的结果,也是第三次工业革命无法穿越的。这是导致第四次工业革命的因。这些问题很显然不是技术问题,更多的应该是理念、理论体系出现了问题。直接的原因就是“管理驱动”。为什么呢?
因为第三次工业革命有悖论,一定是违背了逻辑。我曾经在2015年6月发表了《深度思考|信息化建设理论走歪了!》这篇文章。文中包含了我们持续八年来对管理信息化系统应用问题的深刻思考。对以管理驱动为导向的信息化管理系统存在的问题、弊端和悖论做了有力的论述。原文中关于信息化建设理论的悖论,共提出如下四个论点:违背管理逻辑,管理模型悖论,本末倒置,庸医(大跃进)。我们逐条来看:
(一)违背管理逻辑
从数据的角度抽象管理,管理就是“管数据”,“理数据”。管理的过程抽象,就是“数据获取”、“数据分析”和“数据应用”。这其中包含严格的因果逻辑,即先有“数据获取”,才能做“数据分析”;有的“数据分析”,才有可落地的“数据应用”。
而实际上以“管理驱动”为导向的管理应用系统,强调帮助企业做决策支撑,乃至自动化、智能决策,这些都是属于“数据分析”和”数据应用”的范畴。传统的管理应用系统忽视和弱化了“数据获取”。这就违背前因后果逻辑。“数据分析”和“数据应用”是果,没有因,何生果。
所以违背管理逻辑实际上就是违背了因果法则。