资讯中心

大数据从“云端”到地面应用已初成气候

来源:安防知识网 原标题:扒开现象看本质:大数据应用初成气候
2016/6/23 15:47:27
33724
导读:多年在“云端”的“安防大数据”,一度神一般地存在,却又捉不透、摸不着。不过在行业同仁的共同努力下,其终于开始“食人间烟火”了。
  【中国智能制造网 市场分析】多年在“云端”的“安防大数据”,一度神一般地存在,却又捉不透、摸不着。不过在行业同仁的共同努力下,其终于开始“食人间烟火”了。作为新一代安防的寄托,大数据应用神技究竟练到了第几层?今天我们就来扒一扒。
  
大数据从“云端”到地面 应用已初成气候
 
  大数据落地:众之所盼,却含苞晚放
  
  翻阅安全自动化的历史技术文章,不乏大数据、云计算的技术文章,谈得多了,听得多了,似乎大数据距我们咫尺之遥,呼之欲出;但实际上,大数据始终虚无缥缈,吵吵嚷嚷转头空,回头望月,大数据仿佛仍与嫦娥戏耍。
  
  而从各设备商历史论点看,2014年年底,大华股份大数据、云存储事业部负责人所谈论的观点是大数据为贴切可落地的理论。多年期盼,大数据终于在蹒跚中来了。一经落地,其发展速度之迅猛,超乎行业想象,一时间无论是硬件制造商还是软件开发商,几乎都跟大数据或多或少扯上了关系。
  
  而大数据的落地及遍地开花,似乎昭示着安防产业即将再掀风云。
  
  大数据拔高了安防入门门槛
  
  大数据技术早在IT领域得到了应用,如当下的百度搜索引擎等,用的就是大数据技术;当安防提升到IT技术层面,产业将会面临两极分化的加剧。
  
  从当前产业看,首先推出大数据技术的,清一色为主流设备商或颇具实力的平台厂家,比如IT背景的宇视科技,传统安防厂家海康威视、大华股份、苏州科达,软件平台商东方网力、中盛益华等,无一不是一方枭雄;中小企业与之相比,差距不断拉大。其次是国内安防企业的性,从目前看,安防品牌企业也在跟进大数据技术的开发,但进度缓慢,此前一直牢据世界安防50强名的霍尼韦尔,至今未见其在中国大陆的进一步动作;而泰科、UTC、安讯士、三星安防等众企业关于大数据的介绍也是鲜少得到披露;即便有,与大陆的大数据分析也存在很大的不同,比如泰科、UTC,其已在门禁领域推出了大数据管理系统,但也是去年才面世,与视频监控将非结构化数据处理为结构化数据的深度分析是两种不同类型的应用模式。
  
  近轰动圈内的大新闻则为戴尔进入安防,戴尔的IT技术、存储技术、硬件制造能力强劲,但没有安防积累,无论其要将自身优势移植到安防还是从零开始,安防产业的升级都能让戴尔短时间内难以找到适合的切入点,而产业的不断变化,随着时间的推移,其进入安防的困阻会变得更大。对中小企业来说,没有相应的项目(需求)支撑、技术积累,则将难以脱掉产业转型期间的陪跑角色。
  
  采集端重要性日渐凸显
  
  此前在谈大数据时,都会强调前端采集设备的重要性,如数字化、网络化、高清化、智能化。但实际上,前端采集设备的提升,核心元组件的成熟成了重要依赖,如传感器和处理芯片,共同推动了高清化、智能化;倘若成像稍有处理不当,就会出现数据分析不准确,终导致大数据应用不准确的情况,如宽动态,处理技术达不到需求水平时,需要分析的部位无法识别,数据的结构化也就无法完成了;再比如当前大数据的主流应用领域——车辆识别,若摄像机对眩光无法很好抑制,或是图像色彩不准确,将在车辆色彩特征分析中带来极大麻烦;即便算法识别准确,但是算法的计算设置不当,也会误导大数据检索,比如挂着红色横幅的蓝色车,部分系统会将车色识别为“红色”。
  
  大数据应用的准确性,前端算法是基本保证,数据结构化处理的准确性是基础,两者只要稍有差错,识别的结果将会是另一番景象。
  
  以目前的前端成像技术来说,虽然水平已经很高,但仍存在很多不足,清晰度算是比较高度统一的,如4K,整个行业几乎都做到了2200TVL,但宽动态、色彩还原、星光级夜视能力还是存在较大差距,即便同一个设备商、同样算法的两款不同样式产品的效果也存在天壤之别。
  
  结构化偏科:直指大交通
  
  不可否认,交通是安防领域中人工智能发展为成熟的科目,可识别的内容页很多,包括拍摄方向、是否机动车、车牌号、车牌色、车标、车色、车身重要特征以及压黄线、闯红灯等违规检测,还可通过地感线圈或视频、微波感知车速,仅车标一种,目前已知可识别的种类超过了3600种,且可结合车管所数据库,实时更新识别模型。数据分析成功率高,在as的测评中,大部分可做到98%以上的识别率,部分达到了100%(样本测试),确保了数据结构化的准确性。
  
  但大数据的应用类型很多,绝非车辆识别一种。不过从目前公开的大数据开发情况,除少数门禁平台外,几乎清一色为针对车辆的检索应用。或许人员卡口产品的出现会稍微丰富大数据类型,但人员卡口是自科达的感知型摄像机推出后才获得快速发展,目前应用少、识别的准确性也还在不断提升当中,尚难以形成规模化应用。而对物品的识别,一个是作为半结构化数据采用,另一个则是将物品识别作为人员卡口、车辆卡口的附加检测特征来使用,应用扩展性有限。
  
  应用:二次结构化才是重点
  
  数据结构化的大数据应用的基础,其原理无外乎将视频等非结构化数据经过处理分析后,提取视频特征,并以文本形式保存,同时对文本与原非结构化数据进行关联,以便在检索时能快速对应到原始数据。
  
  而数据的结构化主要有两种方式,一是成像时即进行结构化处理;二是通过后台服务器进行数据二次分析从而实现结构化处理。从目前看,大部分摄像机都是非结构化或半结构化产品,可提供的结构化数据有限;不过智能交通卡口摄像机和新一代人员卡口摄像机可以实现前端数据结构化,可直接将结构化数据提供给分析后台使用;但实际项目中,品牌庞杂易造成兼容性、原有结构化前端可执行的结构化内容有限、非结构化设备量大等问题,后端结构化处理渐渐成了重点,即二次结构化。
 

热门评论

上一篇:面临“生死抉择” 工业软件该何去何从?

下一篇:2016年不得不说的存储市场发展的10大趋势

相关新闻

<