在大数据时代更多数据真的会带来更好的决定?
- 来源:TECH2IPO 原标题:大数据悖论:更多数据会带来更好的决定?
- 2016/6/20 11:51:14
- 31476
在大数据时代 更多数据真的会带来更好的决定?
那么为什么在这些能够频繁接触各种健康监测设备的国家内肥胖率却不断刷新历史高记录?我们只需要点几下鼠标就能基于近几天的锻炼方式和每天记录的体重变化来提供独立个体的理想卡路里摄入,但是为何这些的数据无法转换成为的健康哪?这是一个非常值得深思的问题,我们正激发出“庞大的创新力”来发掘欺诈设备的各种方式,而不是将它们作为工具来改善我们的健康。
问题是访问这些数据并非简单地等同于充分利用这些数据。正如我在今年三月份所指出的,美国政府不乏庞大的精细数据,但是缺乏处理数据的专业技能和授权并将所有的数据转换到具体措施。一家典型的美国服装公司通常具备庞大的数据监测从T恤开始缝的针开始到T恤被消费者购买并带出商店的整个过程的运作。而问题是如何将这些复杂的数据串联整合起来用于解决商业挑战
我所接触的太多公司和机构都视“大数据”孵化和数据分析是充满神奇力量的解决方案,简单地认为只需要获得足够多的数据能够立即推动现有的业务。近年来多家公司疯狂投资物理和数字传感器并尝试和现有业务进行融合,然而他们都还没有搞清楚所有这些数据希望能够解答什么样的问题,且在这样匆忙地部署传感器到现有公司生态系统中是否会产生盲点等等。事实上,这种情况已经在社会多媒体分析领域存在,我经常能够看到公司凭借令人难以置信的高分辨率社交媒体地理上来映射社会观点,与此同时却忽略了在这些地图上依然处于黑暗中的地区,创建了其他分析师在其他分析渠道从未关注的盲区。
在数据社区存在这样一种共识:充足的数据就像是一锅粥,而噪声和偏见就像老鼠屎能够破坏整锅粥的味道。而问题是当我们不断往锅中投入食材(数据),整锅粥并不会因此重新回归到正确的味道,反而会增强偏见的存在。在这样的情况下,小型且更平衡的数据池或许可以散发出更迷人的香气。事实上,正是这种信念在庞大的数据面前催生出纠正导致情感分析领域迷失所有弊端的能量。
信息过载同样也是驱动迫使人类朝人工智能(AI)聊天机器人发展的重要因素。当企业争夺越来越多的大数据,他们已经不再能够在庞大的显示器面前简单地挖掘包含数千项指标的所有数据。他们需要人工智能来对所有数据进行筛选并总结预判事物未来的走向。
在未来电子医疗记录系统将会聚合不断发展的详尽医疗指标,通过减少医疗错误的算法让接近于无限次的合理交互和丰富的领域知识储备逐渐成型。换言之,你可以设想乘坐一辆无人驾驶汽车在繁忙的城市街道穿行,那么人类驾驶员可以幸福地不去关注车辆前方有什么东西,无人驾驶汽车的丰富传感器能够避免数千种潜在危险并预估实际上可能会产生什么后果。以医疗警报为例,合法警报容易在大量的误报中丢失,那么同样可以引申这样的观点--大部分网络安全警报容易在合法却不恰当的流量上丢失。
综上所述,或许大数据今后的焦点应该更少的集中在通过任意部署来收集越来越多的数据,而是更多的聚焦到如何筛选能够反应所提问题的小型辅助数据流上。又或者随着人工智能的成熟,在未来能够竞争应付无限庞大的数据并解决处理所有的问题。在文章的后,给企业的一点建议是必须更少的依赖数据收集而应该花费更多的时间和精力去深挖如何对数据进行分析。
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论