资讯中心

从12个关键词来理解机器学习的内涵和潜能

来源:KDNuggets 原标题:12个关键词,告诉你到底什么是机器学习
2016/6/1 10:31:00
32901
导读:这篇文章为读者梳理了包括这些在内的12个关键词,希望帮助读者更清晰地理解,这项人工智能技术的内涵和潜能。
  【中国智能制造网 技术前沿】随着人工智能(AI)技术对各行各业有越来越深入的影响,我们也更多地在新闻或报告中听到“机器学习”、“深度学习”、“增强学习”、“神经网络”等词汇,对于非专业人士来说略为玄幻。这篇文章为读者梳理了包括这些在内的12个关键词,希望帮助读者更清晰地理解,这项人工智能技术的内涵和潜能。

 从12个关键词来理解机器学习的内涵和潜能
 
  1、机器学习
  
  汤姆·米歇尔教授任职于卡内基梅陇大学计算机学院、机器学习系,根据他在《机器学习》一书中的定义,机器学习是“研究如何打造可以根据经验自动改善的计算机程序”。机器学习在本质上来说是跨学科的,使用了计算机科学、统计学和人工智能以及其他学科的知识。机器学习研究的主要产物是算法,可以帮助基于经验的自动改善。这些算法可以在各个行业有广泛应用,包括计算机视觉、人工智能和数据挖掘。
  
  2、分类
  
  分类的含义是,打造模型,将数据分类进入不同的类别。这些模型的打造方式,是输入一个训练数据库,其中有预先标记好的类别,供算法进行学习。然后,在模型中输入类别未经标记的数据库,让模型基于它从训练数据库中所学到的知识,来预测新数据的类别。
  
  因为这类的算法需要明确的类别标记,因此,分类算是“监督学习”的一种形式。
  
  3、回归
  
  回归是与分类紧密联系在一起的。分类是预测离散的类别,而回归则适用的情况,是当预测“类别”由连续的数字组成。线性回归就是回归技术的一个例子。
  
  4、聚集
  
  聚集是用来分析不含有预先标记过的类别的数据,甚至连类别特性都没有标记过。数据个体的分组原则是这样的一个概念:大化组内相似度、小化组与组之间的相似度。这就出现了聚集算法,识别非常相似的数据并将其放在一组,而未分组的数据之间则没那么相似。K-means聚集也许是聚集算法中的例子。
  
  由于聚集不需要预先将类别进行标记,它算是“无监督学习”的一种形式,意味着算法通过观察进行学习,而不是通过案例进行学习。
  
  5、关联
  
  要解释关联,简单的办法是引入“购物篮分析”,这是一个比较的典型例子。购物篮分析是假设一个购物者在购物篮中放入了各种各样的物品(实体或者虚拟),而目标是识别各种物品之间的关联,并为比较分配支持和置信度测量(编者注:置信度是一个统计学概念,意味着某个样本在总体参数的区间估计)。这其中的价值在于交叉营销和消费者行为分析。关联是购物篮分析的一种概括归纳,与分类相似,除了任何特性都可以在关联中被预测到。Apriori算法被称为的关联算法。
  
  关联也属于“无监督学习”的一种形式。
 

热门评论

上一篇:视觉感知系统 详解多旋翼飞行器上的传感器技术

下一篇:详解MEMS传感器:智能化机器人的秘密武器

相关新闻

<