对机器人来说简单的动作比复杂的推理更难以实现
- 来源:雷锋网 原标题:的莫拉维克悖论:对机器人来说,简单的动作比复杂的推理更难以实现
- 2016/5/16 8:50:02
- 31768
简单的动作比复杂的推理更难以实现
可能有人会说,这都不是事,围棋都已经战胜人类了,给AlphaGo装上机械手让它自己下棋也不过是分分钟事。然而,事实真的是这么简单吗?
回答这个问题之前,先让我们来看个由人工智能和机器人科学家发现的与常识相佐的现象:
让计算机在智力测试或者下棋中展现出一个成年人的水平是相对容易的,但是要让计算机有如一岁小孩般的感知和行动能力却是相当困难甚至是不可能的。这便是在人工智能和机器人领域的莫拉维克悖论。
莫拉维克悖论(Moravec'sparadox)由汉斯·莫拉维克(HansMoravec),罗德尼·布鲁克斯(RodneyBrooks),马文·闵斯基(MarvinMinsky)等人于20世纪80年代提出。莫拉维克悖论指出:和传统假设不同,对计算机而言,实现逻辑推理等人类智慧只需要相对很少的计算能力,而实现感知、运动等低等级智慧却需要巨大的计算资源。
语言学家和认知科学家史迪芬·平克(StevenPinker)认为这是人工智能研究者的重要发现,在“TheLanguageInstinct”这本书里,他写道:经过35年人工智能的研究,人们学到的主要内容是“困难的问题是简单的,简单的问题是困难的”。四岁小孩具有的本能─辨识人脸、举起铅笔、在房间内走动、回答问题等,事实上是工程领域内目前为止难解的问题。随着新一代智慧设备的出现,股票分析师、石化工程师和假释委员会都要小心他们的位置被取代,但是园丁、接待员和厨师至少十年内都不用有这种担心。
与之相似,MarvinMinsky强调,对技术人员来说,难以复刻的人类技能是那些无意识的技能。总体上,应该认识到,一些看起来简单的动作比那些看起来复杂的动作要更加难以实现。
在早期人工智能的研究里,当时的研究学者预测在数十年内他们就可以造出思考机器。他们的乐观部分来自于一个事实,他们已经成功地使用逻辑来创造写作程序,并且解决了代数和几何的问题以及可以像人类棋士般下象棋。正因为逻辑和代数对于人们来说通常是比较困难的,所以被视为一种智慧象征。他们认为,当几乎解决了“困难”的问题时,“容易”的问题也会很快被解决,例如环境识别和常识推理。
但事实证明他们错了,一个原因是这些问题是其实是难解的,而且是令人难以置信的困难。事实上,他们已经解决的逻辑问题是无关紧要的,因为这些问题是非常容易用机器来解决的。
根据当时的研究,智慧重要的特征是那些困难到连高学历的人都会觉得有挑战性的任务,例如象棋,抽象符号的统合,数学定理证明和解决复杂的代数问题。至于四五岁的小孩就可以解决的事情,例如用眼睛区分咖啡杯和一张椅子,或者用腿自由行走,又或是发现一条可以从卧室走到客厅的路径,这些都被认为是不需要智慧的。
在发现莫拉维克悖论后,一部分人开始在人工智能和机器人的研究上追求新的方向,研究思路不再仅仅局限于模仿人类认知学习和逻辑推理能力,而是转向从模仿人类感觉与反应等与物理世界接触的思路设计研发机器人。莫拉维克悖论的发现者之一RodneyBrooks便在其中,他决定建造一种没有辨识能力而只有感知和行动能力的机器,并称之为NouvelleAI。虽然他的研究早在1990年代就开始,但是直到2011年其Baxter机器人还是不能像装配工人那样自如地拿起细小的物件。
由美国国防部研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)举办的机器人挑战赛被称作“当前人工智能中含金量高的比赛”。虽然参赛队伍都是来自的研究机构,但是它的任务却是诸如驾驶、进门、打开阀门、上下楼梯等对人类来说非常简单的任务,即便如此有些队伍仍然无法完成比赛,机器人在比赛中摔倒更是家常便饭。
回到那句有些哲学意味的话“困难的问题是简单的,简单的问题是困难的”。几十年来,我们做出的机器人和人工智能,虽然在智力上已经达到了很高的境界,但在看似简单的与真实物理世界交互的能力依然非常差。目前人工智能和机器人学亟待解决的问题不是如何让机器人学会越来越复杂的逻辑推理,而是让机器人具备对物理世界基本的感知与反应。
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论