盘点:12个安防云计算核心技术
- 来源:安防知识网 原标题:安防云计算核心技术探讨
- 2016/5/10 9:08:21
- 32927
盘点:12个安防云计算核心技术
云计算技术以大系统、大数据为显著的特征,而安防行业是一个非常典型的大数据应用场景,安防行业中的卡口监控系统、视频监控系统由大量的设备组成(包括大量的前端采集设备、后端平台和云计算服务器集群等),每天产生呈几何级增长的数据,随着智慧城市大型项目的不断成功落地,整个安防平台呈现出数据量超大、数据类型多样、数据处理逻辑复杂、数据清洗、数据共享、数据挖掘难度高等处理难题,对安防厂商提出了巨大的挑战。其中主要表现在智能交通行业领域中海量的交通流信息和卡口过车抓拍图片、智慧城市行业领域中的海量视频录像文件等非结构化数据,安防行业的主要用户公安、交警都有着需要对海量图片和视频文件进行安全有效的数据存储、高性能并行计算、智能化的数据分析挖掘后进行实战方面的强烈需求,这些都与云计算特性非常吻合。提供海量存储的同时,如何快速有效的定位多维度数据,挖掘出各类孤岛数据在多维度的潜在关联关系,一直是我们致力于解决的问题。云计算、大数据等技术正在慢慢渗入安防行业,随着这些技术的发展成熟,将对安防行业带来革命性的影响。
大规模混合计算技术
监控系统产生的大量视频图像数据如果只靠人工来进行处理,效率会非常低,借助于视频智能化处理算法,已经可以从视频图像数据中获取一些简单的特征进行比对,或者进行模式匹配产生报警事件,提高了处理的效率。这种方式能够处理的数据量,数据组合的程度,数据的类型等等都还处于较低的水平,无法应对海量数据和日益增长的需求。大规模计算技术的目的就是为了提供一种统一的数据处理平台,上面可以集成各种智能化算法和计算模型,综合处理海量监控数据,以更快的速度得到更有价值的数据。
统一资源管理技术
监控系统产生的主要数据就是视频和图像数据,原始数据经过处理后,会产生更丰富的数据,处理的方式也会有很大不同。比如对于历史视频数据可以在后台处理的视频数据检索,对于卡口的车牌和人脸特征数据需要实时布控,对历史卡口信息需要做到实时检索。这些数据都需要不同的计算框架进行处理,通过引入统一的资源管理平台,可以在同一个资源池里运行不同的计算框架,大幅提高资源的利用率,同时在资源被某种业务独占时,又能大限度的发挥系统的性能。
实时检索技术
传统的结构化数据都采用关系型数据库进行保存,通过RAC等技术形成数据库集群,通过索引方式进行加速,但是核心还是基于行存储和关系运算,面对海量记录时在各个方面都已经遇到了瓶颈。实时检索技术通过引入分布式数据库,列式存储,内存计算,索引引擎等技术,能应对100亿级别的结构化数据,在存储容量,可扩展性,检索速度等多个方面都可以得到大幅提升。该系统在智能交通、刑事侦查等视频监控领域具备重要的研究价值和广阔的应用前景。
复杂事件处理技术
随着安防行业的发展,业务变的也来越复杂,比如智能交通领域,出现了车辆积分研判、套牌车分析、同行车分析等需求。这些需求存在产生结果所依赖的条件多、处理过程实时性的要求高、需要处理的数据量巨大等特点。
传统的方式是采用关系数据库,通过复杂的SQL语句组合,不断查询比对的方式,很难满足实时性的要求。复杂事件处理通过引入流式计算等技术,动态地对输入数据进行实时的分析,处理速度可以大幅提供。不符合条件的数据都被丢弃掉,系统中只存在处理的结果或者可能有用的中间数据,这样对存储的要求也变小了,完全在内存中进行全过程的分析,实时性得到了保证。
人脸检索技术
人脸检索的技术在单台服务器上的应用已经比较成熟,可以应用在身份鉴别、在逃人员抓捕、可疑人员排查、身份证查重等领域。人脸检测过程可以分为以下几个阶段:视频或图像解码、人脸检测、特征提取、特征比对,前三个步骤都是每次请求对应一次计算,计算量相对可控,而后一个步骤特征比每次请求则需要和达亿级的人脸特征进行比对,是运算量大的一个阶段。
一些实时应用的请求数每秒钟可达请求数达到数百次,每次人脸比对次数可达别时,则整个系统需要支持每秒亿级的人脸特征比对计算。如此大规模的计算,单机上是无法完成的,必须采用集群完成。特征库本身规模不大,但是比对次数很大,属于典型的计算密集型集群,特征库可以全部倒入到内存,在内存中完成计算。
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论