达摩院创新网络轻量化方法,助力小蛮驴无人车以1/3算力实现工控机级智
- 来源:TechWeb.com.cn
- 2021/7/26 11:47:49
- 23691
7月21日消息,达摩院自动驾驶实验室提出一种高性能网络轻量化方法“动态宽度可变网络”,解决了以往算法硬件效率低下的问题,在ImageNet数据集上达成2到4倍的理论加速和1.62倍实际加速,以较高5.9%的精度优势超越业界较优方法。该模型将应用于达摩院的“小蛮驴”无人车,也适用于各类有模型轻量化需求的嵌入式设备。
深度学习虽好,但很难部署到嵌入式设备上。深度学习模型对硬件的算力和内存有很高要求,而嵌入式设备往往算力有限,因此,模型轻量化是业界重要的应用研究内容。
以达摩院研发的L4级无人车小蛮驴为例,早期demo阶段的无人车使用工控机执行所有的自动驾驶计算任务,2020年正式发布的小蛮驴则改用达摩院自研的高性能、低功耗、低成本嵌入式异构计算单元,后者需以1/3算力实现工控机级别的智能水平。为此,达摩院持续进行软硬件协同优化设计,包括探索模型轻量化方法。
神经网络剪枝(pruning)是模型轻量化方法之一,它能减少网络参数、降低存储要求、提高计算速度。但既有算法存在瓶颈问题,算法模型与硬件计算不兼容,理论分析与实际加速之间存在很大差距,需要牺牲相当的计算精度和时延,这在自动驾驶应用中是不可接受的。
达摩院自动驾驶团队提出了“动态宽度可变网络”(Dynamic Slimmable Network,DS-Net)算法,在测试时,根据不同输入,预测性地调整网络滤波器数量,既不影响计算精度,还解决了以往算法中硬件效率低下和计算浪费的问题。
滤波器是图像处理任务中的概念,主要作用是提取对象特征作为图像识别的特征模式。主流算法通常会激活所有滤波器,较大限度压榨硬件算力。达摩院模型把剪枝视作动态过程,根据计算任务动态调整滤波器的激活数量。比如,无人车在行驶中感知到行人、汽车等简单场景,只需easy模式;如果遇到“一辆卡车拖着一棵大树”的复杂场景,则启用hard模式,激活更多滤波器。
在ImageNet上,对于ResNet和MobileNet,该方法达成了2到4倍的理论加速和1.62倍的实际加速,超越现有的剪枝、网络搜索和动态网络压缩方法,并以较高5.9%的精度优势超越了SOTA(state-of-the-art)方法Universally Slimmable Network。
达摩院自动驾驶实验室工程师王兵介绍,该方法目前正在适配小蛮驴无人车。由于并非针对特定的硬件设计,算法通用性高,适用于各类有模型轻量化需求的嵌入式设备。
据悉,小蛮驴无人车现已量产投用,未来一年预计将有1000辆车进入全国的高校和社区,开展末端配送服务。
(原标题:达摩院创新网络轻量化方法,助力小蛮驴无人车以1/3算力实现工控机级智能)
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论