自动驾驶五大核心技术包括哪些呢?
- 来源:智能制造网
- 编辑:今夕何夕
- 2020/9/7 15:23:22
- 42221
智能制造网讯 提高交通运行效率、提升社会交通服务的智能化水平,离不开智能汽车、智慧的路和高效的监管与决策。致力于为用户提供安全、舒适、智能、高效驾驶感受的自动驾驶,离不开相应技术的支持。
车联网
目前,由人工智能和“电动化、智能化、网联化、共享化”为代表的新四化变革驱动,正在车联网由第一阶段向第二阶段演进,车联网从汽车内部互联、车与人的交互,慢慢延伸到车与车、车与电信设施、车与路边单元之间的信息交互。
其中,V2X无线通信技术则能够将“人-车-路-网-云”等交通参与要素有机地结合在一起不仅可以支撑车辆获得比单车感知更多信息,促进自动驾驶等技术的研发、转化、应用,还有利于支撑构建一个智慧的交通体系,促使汽车和交通服务朝着新模式业态方向发展。
激光雷达
作为自动驾驶汽车的“眼睛”,激光雷达是重要的传感器之一,对于保证自动驾驶汽车行车安全具有重要意义。激光雷达应用主要分为两个部分:一是落地到自动驾驶测试的无人车上,二是落地到汽车厂商推出的具有辅助驾驶功能的量产车上。
据《中国智能网联汽车产业发展报告(2019)》分析道,激光雷达是未来L4~L5级自动驾驶的核心传感器之一,将逐步由当前的机械旋转式向成本更低、可靠性更高的芯片化、全固态化的方向发展。
精确定位
自动驾驶汽车需要非常精确的定位。除了基于雷达,激光雷达,GNSS和摄像头的普通传感器之外,对于在城市环境中进行自动导航所需的车道级定位来说,轨迹估计也是必不可少的。当前,用于自动驾驶的高精度定位技术主要有以下三种。
其一,基于参考系统信号的定位技术:具有代表性的一种是导航卫星系统,以及UWB、WiF、蓝牙等。其二,环境特征匹配,即基于激光雷达和视觉传感器的相对位置,将传感器观察到的特征与数据库中存储的特征进行匹配定位车辆;其三,INS系统提供航迹估计,一种基于惯性导航IMU的组合导航技术。
人机交互
人机交互技术,尤其是触摸屏、语音控制、手势识别技术,在未来汽车市场上有较大可能得到广泛采用。自动驾驶汽车人机界面应集成功能设定、车辆控制、信息娱乐、导航系统、车载电话等多项功能,方便驾驶员快捷地从中设置、查询、切换车辆系统的各种信息,从面使车辆达到理想的运行和操纵状态。
当然,人机界面的设计必须在好的用户体验和安全之间做好平衡。随着技术的快速成熟,车载信息显示系统和智能手机将实现无缝连接,人机界面提供的输入方式将会有更多选择的空间,用户能够采取不同操作,在不同的功能之间进行自由切换。
规划决策
决策是无人驾驶体现智能性的核心的技术,相当于自动驾驶汽车的大脑,涉及汽车的安全行驶、车与路的综合管理等多个方面。通过综合分析环境感知系统提供的信息,及从高精度地图路由寻址的结果,规划决策者可以对当前车辆进行速度、朝向等规划,并产生相应的停车、跟车、换道等决策。
与此同时,规划技术还需要考虑车辆的机械特性、动力学特性、运动学特性等。从目前来看,常用的决策技术有专家控制、模糊逻辑、贝叶斯网络、隐马尔科夫模型等。随着5G网络、车辆、路面、云端、平台等各个环节的技术不断成熟,车辆正从辅助驾驶转向自动驾驶,基于自动驾驶的协作式智能交通也日益临近。
总结:
发展智能网联与新能源汽车已经成为了行业共识,这一点在各国政府的产业政策与企业未来战略布局上取得了验证。2020年下半年,自动驾驶路测、技术研发、产品创新等方面或将取得更多新成果。
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论