资讯中心

写给并联机器人从业者发展突破得从这些问题入手

来源:高工机器人网
2019/4/18 8:46:49
25725
导读:上世纪八十年代,一类以并联机构为主机构的新型工业机器人(并联机器人)为某些特定工业领域不断提供出更为的解决方案,引起工业界和学术界的普遍关注。
  上世纪八十年代,一类以并联机构为主机构的新型工业机器人(并联机器人)为某些特定工业领域不断提供出更为的解决方案,引起工业界和学术界的普遍关注。
 
  在各种各样的并联机器人种类中,存在一类由外转动/移动副驱动、含平行四边形支链的并联机器人(又称为并联机械手)。这类机器人因可将驱动装置布置在静平台(机架)上,而且从动臂多采用轻质细杆制作而成,故末端动平台可获得很高的运动速度和加速度,特别适合于高速物流生产线上物料的分拣、搬运和抓放等操作,因此逐渐成为近年来研究和开发的热点。
 
  而高速并联机器人的研究,早追溯到Clavel博士于1985年发明的Delta机械手。该机器人主动臂由外转动副驱动,从动臂为平行四边形结构,末端执行器可在工作空间内实现3维高速平动。而且,在静、动平台间加装两端带有虎克铰链的可伸缩转轴,可实现末端执行器绕动平台所在平面法向的单自由度转动,从而完成对标的物的抓放动作。
 
  并联机器人从需求到实际市场应用,过五关斩六将,是必然要解决的难题!
 
  想要制作能满足市场需求的并联机器人成品,先觉性难题是攻克以及掌握高速并联机械手高速高精作业的技术要点!这也是机器人三大核心技术(控制器、伺服电机、减速机)以外的并联机器人核心问题。下面我们一起来随着阿童木机器人这家并联机器人代表,从技术详细剖析并联机器人技术难题。
 
  关—拓扑综合
 
  外行看热闹,内行看门道,很多初出茅庐或者初入此行的朋友,无疑内心都在呐喊,关就这么难啊!这个都是圈圈的图是个什么东西?看不懂啊!
 
  其实这个叫做拓扑综合的技术,主要目的是根据需求,发明出能够满足动作需求的机构。咱们现在看到的并联机器人产品,初都是长得这个样子的。咱们数学界有一套组合拳来解决这个问题,比如收缩图理论、组合分析、枚举论和螺旋理论等。看完只能感慨,数学真伟大!没有数学这个回旋踢咱们可过不了这关啊!并联机器人同仁们加油!
 
  第二关—参数设计
 
  这个看着好像是机器人的形状了,不过咋还这么多符号呢?一脸茫然。咱们过了关,拿到了一个大致能实现需求的机构构型,但这东西没法用啊!怎么知道输入输出的数学关系,怎么确定每个零部件的尺度参数,怎么确定机器人长多大呢?再如何经过训练让机构长出肌肉,确定每个零部件的结构参数?又如何确定用多大的力来驱动这个机构运动呢?
 
  从技术上来说,步,我们先得用空间向量或者螺旋理论建立描述我们这个机构输入输出关系的运动学、动力学模型;第二步,我们需要结合机构的运动特性提炼运动学和动力学方程中的优化目标和约束条件,对机构的尺度参数和结构参数进行优化设计;第三步,我们根据尺度参数和结构参数,通过牛顿欧拉等等数学工具,再确定机构的驱动参数。事实上述过程是这样的:
 
  好吧!小白看看就觉得够神秘!!!!不过好歹第二关终于步步细心的过去了!
 
  第三关—虚拟仿真
 
  阿童木机器人,未来的目标定位市场!因此满足国内外标准,先做出真实性数据下的实验,才是企业生产的前提!于是,还得过第三关-虚拟仿真。
 
  这时,matlab、adams、samcef、ansys的十八般武艺都得企业掌握!这一套组合踢出去,万水千山走过,我们才能自豪的说,没问题了,仿真分析和理论设计吻合。
 
  那仿真分析这关过了,我们可以绘制零件图纸了吗?怎么可能!
 
  知道每个零件公差精度怎么给吗?知道哪个零件需要重点关注吗?知道部件装配精度需要如何保证吗?知道部件的装配工艺吗?不知道?那还不得赶快先搞清楚去!
 
  第四关—精度设计与标定
 
  终于千辛万苦来到第四关,这第四关就是建立机器人的误差分析模型,分离可补偿误差和不可补偿误差。
 
  针对可补偿误差,我们需建立运动学标定模型,在后面控制系统里进行补偿;针对不可补偿误差,我们需进行灵敏度分析和公差设计,确定关键零部件的制造和装配精度,并依据该精度确定零部件的装配工艺和检测方法。
 
  看到这很多人终于明白,以后决不会再说本体没有核心技术了,但这些都不懂啊!怎么办?不懂就得学啊!这又是一个又一个数学难题!
 
  第五关—控制器与算法
 
  以上四关过后,感觉天空飘起了彩虹,终于可以期盼样机本体部分可以制作了。不过,快乐的时刻都是短暂的。我们好像漏掉了什么东西?是的,我们做的只是并联机器人的骨架和肌肉,那控制行为的大脑怎么建呢?思维怎么形成呢?
 
  好在这个大脑我们是可以从国外买的,但是,核心技术怎么能掌握在被人手里呢?况且,我们还有的算法需要写进去呢!所以,阿童木机器人团队下定决心,在市场反对自主研发的声音下,成立了神秘的大脑研究部!
 
  从此,该部门开启了没有白天黑夜的操练模式。无数个日夜,无数箱弹药,都投在这个地方,没办法,谁让咱们基础差呢!只能不断继续努力,勤能补拙!好在阿童木机器人的资本年轻有毅力又善于学习。
 
  经过长达3个春夏秋冬的持续攻关,阿童木机器人终于完成大脑的建设!并在思维层面也取得了突破!通过对于运动规律和抑振算法的研究,使得机器人的精度又获提升!
 
  眼看胜利的曙光尽在眼前了,无疑很多人内心是激动、喜悦掺杂着泪水啊!感觉终于要松一口气了,但是!因为咱做的是产品,需要经过市场严格的检验!不能只是研究啊!这些研究需要落实到切实产品性能,需要转化为客户需要的速度、精度等性能参数。
 
  当然重要的是我们得做可靠性研究测试!客户的24小时使用场景,是让企业无比纠结的一件事情,如果这个不过关,不但每天半夜电话可以打到你神经衰弱的,从工程师到销售的内心也是惴惴不安的!核心零部件都解决了,那就一鼓作气,更全面一些解决这个问题,直接过关吧!
 
  (原标题:并联机器人从业者必看!这些问题是突破核心!)

热门评论

上一篇:人工智能“作品”是否可以拥有著作权保护?

下一篇:AI安防核心转向场景体验 企业合作成未来趋势

相关新闻

<