谷歌I/O2018的AI亮点全在这了
- 来源:物网智库
- 2018/5/9 9:03:30
- 24014
【中国智能制造网 企业动态】2018年5月8日,一年一度的谷歌 I/O大会在美国加州山景城开幕。2016 年谷歌从移动优先到人工智能优先(AI-first),两年来我们从谷歌 I/O 看到了谷歌如何践行这一战略。在今日刚刚结束的 Keynote 中,机器学习依旧是整个大会的主旋律:谷歌发布了 TPU 3.0、Google Duplex,以及基于 AI 核心的新一代安卓操作系统 Android P,也介绍了自己在 News、Map、Lens 等众多产品中对 AI 与机器学习模型的应用。本文带你一览谷歌I/O 2018首日keynote的核心亮点。
在今天的 Keynote 中,谷歌 CEO 桑德尔·皮查伊等人介绍了谷歌一年来的多方面 AI 研究成果,例如深度学习医疗、TPU3.0、Google Duplex 等,也展示了 AI 如何地融入了谷歌每一条产品线,从安卓到 Google Lens 和 Waymo。在本文中,机器之心对 Keynote 的核心内容进行了整理。
深度学习医疗
大会刚开始,昨天谷歌所有的 AI 研究合并出的 Google AI 发布了一篇博客,介绍谷歌在医疗领域的研究:
联合斯坦福医学院、加州大学旧金山分校 、芝加哥大学医学中心,谷歌今天在 Nature Partner Journals: Digital Medicine 上发布了一篇论文《Scalable and Accurate Deep Learning with Electronic Health Records》。
在此研究中,谷歌使用深度学习模型根据去识别的电子病历做出大量与病人相关的预测。重要的是,谷歌能够使用原始数据,不需要人工提取、清洁、转换病历中的相关变量。
在预测之前,深度学习模型读取早期到现在所有的数据点,然后学习对预测输出有帮助的数据。由于数据点数量巨大,谷歌基于循环神经网络与前馈网络开发出了一种新型的深度学习建模方法。
至于预测准确率(标准:1.00 为得分),如果病人就医时间较长,论文提出的模型预测得分为 0.86,而传统的 logistic 回归模型得分为 0.76。这一预测准确率已经相当惊人。
Looking to Listen:音频-视觉语音分离模型
而后,皮查伊介绍了谷歌博客不久前介绍的新型音频-视觉语音分离模型。
在论文《Looking to Listen at the Cocktail Party》中,谷歌提出了一种深度学习音频-视觉模型,用于将单个语音信号与背景噪声、其他人声等混合声音分离开来。这种方法用途广泛,从视频中的语音增强和识别、视频会议,到改进助听器,不一而足,尤其适用于有多个说话人的情景。
据介绍,这项技术的独特之处是结合了输入视频的听觉和视觉信号来分离语音。直观地讲,人的嘴的运动应当与该人说话时产生的声音相关联,这反过来又可以帮助识别音频的哪些部分对应于该人。视觉信号不仅在混合语音的情况下显著提高了语音分离质量(与仅仅使用音频的语音分离相比),它还将分离的干净语音轨道与视频中的可见说话者相关联。
在谷歌提出的方法中,输入是具有一个或多个说话人的视频,其中我们需要的语音受到其他说话人和/或背景噪声的干扰。输出是将输入音频轨道分解成的干净语音轨道,其中每个语音轨道来自视频中检测到的每一个人。
皮查伊还介绍了谷歌其他 NLP 应用,例如通过谷歌的键盘输入摩斯电码让语言障碍者重新获得表达能力、GMail 中利用语言模型与语境信息预测输入。
之后,皮查伊介绍了谷歌在计算机领域的一些研究成果与应用,包括医疗影像方面的研究,移动设备中应用的照片理解、抠图、自动上色和文档处理等。
TPU 3.0
去年,谷歌 I/0 公布了 TPU 2.0,且开放给了谷歌云客户。今天,皮查伊正式宣布 TPU 3.0 版本。
皮查伊介绍,TPU 3.0 版本功能强大,采用液冷系统,计算性能是 TPU 2.0 的 8 倍,可解决更多问题,让用户开发更大、更好、更准确的模型。更多有关 TPU 3.0 的信息也许会在之后放出。
Google Assitant 与 Google Duplex
集成谷歌人机交互研究的 Google Assistant 在今日的 keynote 中必然会亮相。Google Assitant 负责工程的副总裁 Scott Huffman 介绍了 Google Assitant 过去一年的成果,谷歌产品管理总监 Lilian Rincon 介绍了带有视觉体验的 Google Assistant 产品,且有数款产品将在今年 7 月份发布。
而后谷歌 CEO 桑德尔·皮查伊在 Keynote 中展示了语言交互的重要性,并正式介绍了一种进行自然语言对话的新技术 Google Duplex。这种技术旨在完成预约等特定任务,并使系统尽可能自然流畅地实现对话,使用户能像与人对话那样便捷。
这种自然的对话非常难以处理,因为用户可能会使用更加不正式或较长的句子,且语速和语调也会相应地增加。此外,在交互式对话中,同样的自然语句可能会根据语境有不同的意思,因为人类之间的自然对话总是根据语境尽可能省略一些语言。
为了解决这些问题,Duplex 基于循环神经网络和 TensorFlow Extended(TFX)在匿名电话会话数据集上进行训练。这种循环网络使用谷歌自动语音识别(ASR)技术的输出作为输入,包括语音的特征、会话历史和其它会话参数。谷歌会为每一个任务独立地训练一个理解模型,但所有任务都能利用共享的语料库。此外,谷歌还会使用 TFX 中的超参数优化方法优化模型的性能。
(原标题:谷歌I/O 2018的AI亮点全在这了)
版权与免责声明:凡本网注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本网授权不
展开全部
热门评论