资讯中心

李笛:对话式AI泡沫明显,数据和用量是硬伤

来源:新智元 作者:胡祥杰
编辑:沐子飞
2017/3/6 13:41:56
28611
导读:微软(亚洲)互联网工程院副院长李笛认为,国内现在两个主要的竞争对手所做的对话式AI 产品,一个只是管道,没有其他价值,另一个则没有用户量。
  【中国智能制造网 名家论谈】微软(亚洲)互联网工程院副院长李笛对当下国内外的对话AI 发展方向和途径提出了许多直接的观点,他认为,国内现在两个主要的竞争对手所做的对话式AI 产品,一个只是管道,没有其他价值,另一个则没有用户量。另外,他还透露了关于“小冰”的一些新数据。对话的交互被认为是人工智能的下一个重大方向和突破点,现在行业处于什么水平?在技术和产品上需要注意哪些“坑”,李笛有话要说。

微软(亚洲)互联网工程院副院长 李笛
 
  微软“人工智能少女”小冰自2014年在中国发布以来,经过三年的发展,现在已经成为微信和微博上的网红、名副其实的大 V:2016年,小冰已经拥有四千万用户,与用户间的对话轮次平均 23 轮。新的数据显示,小冰的对话数据积累已经超过200亿次。“小冰”从位于中国的微软(亚洲)互联网工程院出发,先后扩展到日本、美国和印度等国。
 
  微软有过不少成功的内部孵化的产品,但小冰是一个自1992 年微软设立北京办事处以来,完全孵化并发展于中国的产品。小冰被视为微软近年来在人工智能技术产品上的一次集中呈现,融合了微软过去19年在图像识别、语义理解和语音识别等技术积累。
 
  2016 年Build 大会上,微软 CEO 纳德拉提出 “Conversational as a Platform” 的战略,以对话为基础的AI 发展方向路线逐渐明晰。在互联网和移动互联网时代表现平庸的微软在人工智能时代野心勃勃的布局已经在小冰身上得到凸显。
 
  近日,新智元走进微软(亚洲)互联网工程院,采访到微软小冰项目负责人李笛,对小冰背后的核心理念进行深入探究。在微软,李笛是微软 Bing 搜索中国负责人,也是小冰这一项目的发起人,有“小冰之父”之称。
 
  要对话,光有识别不够
 
  “完全基于认知的过程去生成一个人工智能,技术上可行,产品上,这个方向就不太通了。因为这就好像是要求你去证明一个定理,你需要通过每一个步骤都可读的方式把定理证明出来”,他说,“我们的信仰是大数据,我们的信仰是拟合,我们信仰是AI与人类交互本身是一个黑盒子。”
 
  今天如果和小冰对话,你会发现,如果输入一张图像,你得到的结果与传统的图像识别的系统的回复结果是完全不同的。
 
  李笛说,其实坦率地讲,计算机视觉现在不管做到多少层,它的回复结果还是基本Base在一个图像理解上,也就是识别和理解,后得到一个描述(解释),这跟2006年吴恩达在谷歌做的,技术上有很大突破,产品上则没有什么本质区别。换句话说,你给我一张猫的照片,我会告诉你,这是一只猫。一般来说,当我把“这是一只猫”的结果给你的时候,我们的对话就结束了,因为你得到了结果。但是,其实对于微软来说,我们的理解是,当一个用户把一张猫的照片给AI系统的时候,用户很可能并不需要这个结果。
 
  李笛说:“你把一只猫的照片给我,然后我回复你,这是一只猫?其实对你来讲,这是一个没用的信息,这个结论你知道的多半比我还清楚。只能证明我识别准确了。而不会有接下来的数据。如果你把这张照片给小冰,它会回复的是超越语义空间的。”
 
  李笛曾经多次提到一个例子:有个同事的脚扭了,把脚扭伤的照片发给小冰,小冰的回复是,你伤得严重吗?一般来说,根据图像识别的逻辑,人工智能系统应该会告诉你,这是一只脚。如果分类做得更好,它可以告诉你,这是一个脚踝。语义空间再深,它才能告诉你这是一只受伤的脚。还要再深,才能给你一个情感的反应,而且这个反应是需要 Long-tail 的。这不是靠Editor写的。但是,如果回复是“伤得严重吗?”,用户可能会接着把对话进行下去,因为这是一个Engage,接下来这句话就可以成为的标注数据。如果只能告诉你这是一个脚踝,那么你这个就是一个测试Query,测一下就走了,这个能带来的标注就是“识别是准确的”。但是这个没这么大意义。
 
  他也提到,小冰整个团队Editor 的人数非常少。
 
  情感为什么是可计算的?李笛认为,这取决于对情感的定义。
 
  “完全基于认知的过程去生成一个人工智能,技术上可行,产品上,这个方向就不太通了。因为这就好像是要求你去证明一个定理,你需要通过每一个步骤都可读的方式把定理证明出来”,他说,“我们的信仰是大数据,我们的信仰是拟合,我们信仰是AI与人类交互本身是一个黑盒子。”
 
  他认为,如果探究图灵测试的本质,本身也是一个黑盒子,人们从来不关心你中间是如何实现的,以及这句话是由机器说出来,还是由人说出来的。他们关注的是,你是不是能够从结果上混淆它的认知过程。
 
  为什么情感计算可行,是出于这个原因。如果跟其他人定义一样,认为首先要定义“常识”是什么,那么它也还是不可行的。
 
  李笛说:“这就是今天要造出一个真正有情感的机器人面临的难题。但是,似乎也没有人能证明狗是有情感的,你无法用理论甚至解剖学来证明,但是我们能感受到,会觉得它听得懂我们,它会拿眼睛盯着你。从这个程度上看,狗至少可以拟合人类情感,这样才可以和人交流。这跟小冰是一样的。”
 

热门评论

上一篇:人大代表孙丕恕:大数据驱动智能制造生态圈建设

下一篇:何帮喜委员:建议把智能制造、大数据提升为国家战略

相关新闻

<